Temperature of the Source Plasma in Gradual Solar Energetic Particle Events

Abstract

Scattering during interplanetary transport of particles during large, “gradual” solar energetic-particle (SEP) events can cause element abundance enhancements or suppressions that depend upon the mass-to-charge ratio [\(A/Q\)] of the ions as an increasing function early in events and a decreasing function of the residual scattered ions later. Since the \(Q\)-values for the ions depend upon the source plasma temperature [\(T\)], best fits of the power-law dependence of enhancements vs. \(A/Q\) can determine \(T\). These fits provide a fundamentally new method to determine the most probable value of \(T\) for these events in the energy region \(3\,\mbox{--}\,10~\mbox{MeV}\,\mbox{amu}^{-1}\). Complicated variations in the grouping of element enhancements or suppressions match similar variations in \(A/Q\) at the best-fit temperature. We find that fits to the times of increasing and decreasing powers give similar values of \(T\), in the range of 0.8 – 1.6 MK for 69 % of events, consistent with the acceleration of ambient coronal plasma by shock waves driven out from the Sun by coronal mass ejections (CMEs). However, 24 % of the SEP events studied showed plasma of 2.5 – 3.2 MK, typical of that previously determined for the smaller impulsive SEP events; these particles may be reaccelerated preferentially by quasi-perpendicular shock waves that require a high injection threshold that the impulsive-event ions exceed or simply by high intensities of impulsive suprathermal ions at the shock. The source-temperature distribution of ten higher-energy ground-level events (GLEs) in the sample is similar to that of the other gradual events, at least for SEPs in the energy-range of \(3\,\mbox{--}\,10~\mbox{MeV}\,\mbox{amu}^{-1}\). Some events show evidence that a portion of the ions may have been further stripped of electrons before the shock acceleration; such events are smaller and tend to cluster late in the solar cycle.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Arnaud, M., Raymond, J.: 1992, Astrophys. J. 398, 394.

    ADS  Article  Google Scholar 

  2. Arnaud, M., Rothenflug, R.: 1985, Astron. Astrophys. Suppl. 60, 425.

    ADS  Google Scholar 

  3. Breneman, H.H., Stone, E.C.: 1985, Astrophys. J. Lett. 299, L57.

    ADS  Article  Google Scholar 

  4. Cliver, E.W.: 2006, Astrophys. J. 639, 1206.

    ADS  Article  Google Scholar 

  5. Cliver, E.W., Ling, A.G.: 2007, Astrophys. J. 658, 1349.

    ADS  Article  Google Scholar 

  6. Cliver, E.W., Ling, A.G.: 2009, Astrophys. J. 690, 598.

    ADS  Article  Google Scholar 

  7. Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Astrophys. J. 605, 902.

    ADS  Article  Google Scholar 

  8. Cohen, C.M.S., Mewaldt, R.A., Leske, R.A., Cummings, A.C., Stone, E.C., Wiedenbeck, M.E., von Rosenvinge, T.T., Mason, G.M.: 2007, Space Sci. Rev. 130, 183.

    ADS  Article  Google Scholar 

  9. Desai, M.I., Mason, G.M., Dwyer, J.R., Mazur, J.E., Gold, R.E., Krimigis, S.M., Smith, C.W., Skoug, R.M.: 2003, Astrophys. J. 588, 1149.

    ADS  Article  Google Scholar 

  10. Desai, M.I., Mason, G.M., Wiedenbeck, M.E., Cohen, C.M.S., Mazur, J.E., Dwyer, J.R., Gold, R.E., Krimigis, S.M., Hu, Q., Smith, C.W., Skoug, R.M.: 2004, Astrophys. J. 661, 1156.

    ADS  Article  Google Scholar 

  11. Desai, M.I., Mason, G.M., Gold, R.E., Krimigis, S.M., Cohen, C.M.S., Mewaldt, R.A., Mazur, J.E., Dwyer, J.R.: 2006, Astrophys. J. 649, 740.

    ADS  Article  Google Scholar 

  12. DiFabio, R., Guo, Z., Möbius, E., Klecker, B., Kucharek, H., Mason, G.M., Popecki, M.: 2008, Astrophys. J. 687, 623.

    ADS  Article  Google Scholar 

  13. Drake, J.F., Cassak, P.A., Shay, M.A., Swisdak, M., Quataert, E.: 2009, Astrophys. J. Lett. 700, L16.

    ADS  Article  Google Scholar 

  14. Giacalone, J.: 2005, Astrophys. J. 624, 765.

    ADS  Article  Google Scholar 

  15. Gopalswamy, N., Yashiro, S., Michalek, G., Kaiser, M.L., Howard, R.A., Reames, D.V., Leske, R., von Rosenvinge, T.: 2002, Astrophys. J. Lett. 572, L103.

    ADS  Article  Google Scholar 

  16. Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, J. Geophys. Res. 109, A12105.

    ADS  Article  Google Scholar 

  17. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, Earth Moon Planets 104, 295.

    ADS  Article  Google Scholar 

  18. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mälekä, P., Usoskin, I.G.: 2012, Space Sci. Rev. 171, 23. DOI .

    ADS  Article  Google Scholar 

  19. Gosling, J.T.: 1993, J. Geophys. Res. 98, 18937.

    ADS  Article  Google Scholar 

  20. Kahler, S.W.: 1992, Annu. Rev. Astron. Astrophys. 30, 113.

    ADS  Article  Google Scholar 

  21. Kahler, S.W.: 1994, Astrophys. J. 428, 837.

    ADS  Article  Google Scholar 

  22. Kahler, S.W.: 2001, J. Geophys. Res. 106, 20947.

    ADS  Article  Google Scholar 

  23. Kahler, S.W., Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J., McGuire, R.E., von Rosenvinge, T.T., Reames, D.V.: 1984, J. Geophys. Res. 89, 9683.

    ADS  Article  Google Scholar 

  24. Klecker, B., Kunow, H., Cane, H.V., Dalla, S., Heber, B., Kecskemety, K., Klein, K.-L., Kota, J., Kucharek, H., Lario, D., Lee, M.A., Popecki, M.A., Posner, A., Rodriguez-Pacheco, J., Sanderson, T., Simnett, G.M., Roelof, E.C.: 2006, Space Sci. Rev. 123, 217.

    ADS  Article  Google Scholar 

  25. Lee, M.A.: 1983, J. Geophys. Res. 88, 6109.

    ADS  Article  Google Scholar 

  26. Lee, M.A.: 1997, In: Crooker, N., Jocelyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monograph 99, AGU, Washington, 227.

    Google Scholar 

  27. Lee, M.A.: 2005, Astrophys. J. Suppl. 158, 38.

    ADS  Article  Google Scholar 

  28. Leske, R.A., Cummings, J.R., Mewaldt, R.A., Stone, E.C., von Rosenvinge, T.T.: 1995, Astrophys. J. Lett. 452, L149.

    ADS  Article  Google Scholar 

  29. Leske, R.A., Mewaldt, R.A., Cummings, A.C., Stone, E.C., von Rosenvinge, T.T.: 2001, In: Wimmer-Schweingruber, R.F. (ed.) Solar and Galactic Composition, CP-598, AIP, Melville, 171.

    Google Scholar 

  30. Li, G., Moore, R., Mewaldt, R.A., Zhao, L., Labrador, A.W.: 2012, Space Sci. Rev. 171, 141.

    ADS  Article  Google Scholar 

  31. Liu, S., Petrosian, V., Mason, G.M.: 2006, Astrophys. J. 636, 462.

    ADS  Article  Google Scholar 

  32. Luhn, A., Klecker, B., Hovestadt, D., Gloeckler, G., Ipavich, F.M., Scholer, M., Fan, C.Y., Fisk, L.A.: 1984, Adv. Space Res. 4, 161.

    ADS  Article  Google Scholar 

  33. Mason, G.M.: 2007, Space Sci. Rev. 130, 231.

    ADS  Article  Google Scholar 

  34. Mason, G.M., Mazur, J.E., Dwyer, J.R.: 1999, Astrophys. J. Lett. 525, L133.

    ADS  Article  Google Scholar 

  35. Mason, G.M., Mazur, J.E., Dwyer, J.R., Jokipii, J.R., Gold, R.E., Krimigis, S.M.: 2004, Astrophys. J. 606, 555.

    ADS  Article  Google Scholar 

  36. Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Astron. Astrophys. Suppl. 133, 403.

    ADS  Article  Google Scholar 

  37. Mewaldt, R.A., Cohen, C.M.S., Mason, G.M., Cummings, A.C., Desai, M.I., Leske, R.A., Raines, J., Stone, E.C., Wiedenbeck, M.E., von Rosenvinge, T.T., Zurbuchen, T.H.: 2007, Space Sci. Rev. 130, 207.

    ADS  Article  Google Scholar 

  38. Meyer, J.P.: 1985, Astrophys. J. Suppl. 57, 151.

    ADS  Article  Google Scholar 

  39. Ng, C.K., Reames, D.V.: 2008, Astrophys. J. Lett. 686, L123.

    ADS  Article  Google Scholar 

  40. Ng, C.K., Reames, D.V., Tylka, A.J.: 2003, Astrophys. J. 591, 461.

    ADS  Article  Google Scholar 

  41. Parker, E.N.: 1963, Interplanetary Dynamical Processes, Wiley, New York.

    Google Scholar 

  42. Post, D.E., Jensen, R.V., Tarter, C.B., Grasberger, W.H., Lokke, W.A.: 1977, At. Data Nucl. Data Tables 20, 397.

    ADS  Article  Google Scholar 

  43. Reames, D.V.: 1995, Adv. Space Res. 15(7), 41.

    ADS  Article  Google Scholar 

  44. Reames, D.V.: 1998, Space Sci. Rev. 85, 327.

    ADS  Article  Google Scholar 

  45. Reames, D.V.: 1999, Space Sci. Rev. 90, 413.

    ADS  Article  Google Scholar 

  46. Reames, D.V.: 2000, Astrophys. J. Lett. 540, L111.

    ADS  Article  Google Scholar 

  47. Reames, D.V.: 2009, Astrophys. J. 706, 844.

    ADS  Article  Google Scholar 

  48. Reames, D.V.: 2013, Space Sci. Rev. 175, 53.

    ADS  Article  Google Scholar 

  49. Reames, D.V.: 2014, Solar Phys. 289, 977. DOI .

    ADS  Article  Google Scholar 

  50. Reames, D.V.: 2015, Space Sci. Rev. 194, 303. arXiv . DOI .

    ADS  Article  Google Scholar 

  51. Reames, D.V., Ng, C.K.: 2004, Astrophys. J. 610, 510.

    ADS  Article  Google Scholar 

  52. Reames, D.V., Ng, C.K.: 2010, Astrophys. J. 723, 1286.

    ADS  Article  Google Scholar 

  53. Reames, D.V., Stone, R.G.: 1986, Astrophys. J. 308, 902.

    ADS  Article  Google Scholar 

  54. Reames, D.V., Barbier, L.M., von Rosenvinge, T.T., Mason, G.M., Mazur, J.E., Dwyer, J.R.: 1997, Astrophys. J. 483, 515.

    ADS  Article  Google Scholar 

  55. Reames, D.V., Ng, C.K., Berdichevsky, D.: 2001, Astrophys. J. 550, 1064.

    ADS  Article  Google Scholar 

  56. Reames, D.V., Cliver, E.W., Kahler, S.W.: 2014a, Solar Phys. 289, 3817. arXiv . DOI .

    ADS  Article  Google Scholar 

  57. Reames, D.V., Cliver, E.W., Kahler, S.W.: 2014b, Solar Phys. 289, 4675. arXiv . DOI .

    ADS  Article  Google Scholar 

  58. Reames, D.V., Cliver, E.W., Kahler, S.W.: 2015, Solar Phys. 290, 1761. arXiv . DOI .

    ADS  Article  Google Scholar 

  59. Roth, I., Temerin, M.: 1997, Astrophys. J. 477, 940.

    ADS  Article  Google Scholar 

  60. Rouillard, A.C., Odstrčil, D., Sheeley, N.R. Jr., Tylka, A.J., Vourlidas, A., Mason, G., Wu, C.-C., Savani, N.P., Wood, B.E., Ng, C.K., et al.: 2011, Astrophys. J. 735, 7.

    ADS  Article  Google Scholar 

  61. Rouillard, A., Sheeley, N.R. Jr., Tylka, A., Vourlidas, A., Ng, C.K., Rakowski, C., Cohen, C.M.S., Mewaldt, R.A., Mason, G.M., Reames, D., et al.: 2012, Astrophys. J. 752, 44.

    ADS  Article  Google Scholar 

  62. Sandroos, A., Vainio, R.: 2009, Astron. Astrophys. 507, L21.

    ADS  Article  Google Scholar 

  63. Schmelz, J.T., Reames, D.V., von Steiger, R., Basu, S.: 2012, Astrophys. J. 755, 33.

    ADS  Article  Google Scholar 

  64. Tan, L.C., Reames, D.V., Ng, C.K., Shao, X., Wang, L.: 2011, Astrophys. J. 728, 133.

    ADS  Article  Google Scholar 

  65. Tan, L.C., Malandraki, O.E., Reames, D.V., Ng, C.K., Wang, L., Patsou, I., Papaioannou, A.: 2013, Astrophys. J. 768, 68.

    ADS  Article  Google Scholar 

  66. Temerin, M., Roth, I.: 1992, Astrophys. J. Lett. 391, L105.

    ADS  Article  Google Scholar 

  67. Tylka, A.J., Lee, M.A.: 2006, Astrophys. J. 646, 1319.

    ADS  Article  Google Scholar 

  68. Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Krucker, S., McGuire, R.E., Mewaldt, R.A., Ng, C.K., Reames, D.V., Share, G.H.: 2003, Proc. 28th Int. Cosmic Ray Conf. 3305.

    Google Scholar 

  69. Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2005, Astrophys. J. 625, 474.

    ADS  Article  Google Scholar 

  70. Tylka, A.J., Malandraki, O.E., Dorrian, G., Ko, Y.-K., Marsden, R.G., Ng, C.K., Tranquille, C.: 2012, Solar Phys. 285, 251. DOI .

    ADS  Article  Google Scholar 

  71. von Rosenvinge, T.T., Barbier, L.M., Karsch, J., Liberman, R., Madden, M.P., Nolan, T., Reames, D.V., Ryan, L., Singh, S., et al.: 1995, Space Sci. Rev. 71, 155.

    ADS  Article  Google Scholar 

  72. Wang, L., Lin, R.P., Krucker, S., Mason, G.M.: 2012, Astrophys. J. 759, 69.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The author thanks Steve Kahler, Lun Tan, and Allan Tylka for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donald V. Reames.

Appendices

Appendix A: Scattering as a Power-Law in \(A/Q\)?

In this article we assumed that element enhancements or suppressions caused by scattering during transport have approximately a power-law dependence upon \(A/Q\). How good is this approximation?

Given that the scattering mean free path [\(\lambda_{\mathrm{X}}\)] depends upon \((A_{\mathrm{x}} /Q_{\mathrm{x}})^{\alpha}\) but is independent of distance [\(R\)], we can use the expression for the solution to the diffusion equation (from Equation (5) in Tylka et al. 2012 or Equation (C3) in Ng, Reames, and Tylka 2003 based upon Parker 1963) to write the enhancement of element X relative to O as a function of time [\(t\)] as

$$ \mathrm{X}/\mathrm{O} = r^{-3/2} \exp \bigl\{ (1-1/r) \tau /t \bigr\} , $$
(1)

where \(r = \lambda_{\mathrm{X}} / \lambda_{\mathrm{O}} = ( (A_{\mathrm{x}} /Q_{\mathrm{x}}) / (A_{\mathrm{O}} /Q_{\mathrm{O}}) )^{\alpha}\), and we have redefined the parameter \(\tau\), factoring the \(r\)-dependence from it. In Figure 13 we plot \(\mathrm{X}/\mathrm{O}\) vs. the relative value of \((A_{\mathrm{x}} /Q_{\mathrm{x}}) / (A_{\mathrm{O}} /Q_{\mathrm{O}})\) for several values of \(\tau/t\). The value of \(\alpha =0.6\) was used in this sample. This is nearly twice the value of \(\alpha = 1/3\) for scattering by a Kolmogorov spectrum of waves. The nonlinearity increases with \(\alpha\).

Figure 13
figure13

The enhancement of an element [\(\mathrm{X}/\mathrm{O}\)] is shown as a function of its value of \(A_{\mathrm{x}} /Q_{\mathrm{x}}\) relative to that of the reference [O] for several values of the time variable \(\tau/t\). A dashed fit line is plotted for comparison with the curve for \(\tau/t = 8\).

For \(\mathrm{X} = \mbox{Fe}\), experimentally observed enhancements rarely exceed ten, implying that \(\tau/t \leq 8\), and \(A/Q\) for Fe rarely exceeds that of O by a factor of four (see Figure 1). The \(A/Q\) dependence at late times when \(\tau/t = 0\) is a power law. A dashed fit line is plotted for comparison with the curve for \(\tau/t = 8\). The discrepancy reaches \({\approx}\,20~\%\) at most and varies smoothly across the range. It cannot regroup elements with different values of \(A/Q\) to compensate for the complex variation seen in Figure 1.

Formally, we can achieve a linear approximation if we remember the expansion of \(\log x = (1-1/x) + (1-1/x)^{2} /2 +\cdots\) (for \(x > 1/2\)). Using only the first term to replace \(1-1/r\) with log \(r\) in Equation (1), we have

$$ \mathrm{X}/\mathrm{O} \approx r^{\tau/ t - 3/2} $$
(2)

for \(r > 1/2\) as an expression for the power-law dependence of enhancements on \(A/Q\) of species X. Since we can choose He or O as a reference, we can always ensure that \(r \geq 1\).

Appendix B

Table 2 shows properties of the gradual SEP events for which we were able to determine source plasma temperatures. Successive columns show the source CME onset time, the end time of SEP accumulation, the CME speed, associated flare location, GLE? (\(\mbox{true}=1\)), stripped ions present? (\(\mbox{true}=1\)), and the derived source plasma temperature.

Table 2 Source plasma temperatures of gradual SEP events

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reames, D.V. Temperature of the Source Plasma in Gradual Solar Energetic Particle Events. Sol Phys 291, 911–930 (2016). https://doi.org/10.1007/s11207-016-0854-9

Download citation

Keywords

  • Solar energetic particles
  • Solar flares
  • Coronal mass ejections
  • Solar system abundances