Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT

Abstract

Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J. 768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), \(\mathrm{H}\alpha\), and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and \(\alpha\) particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at \({\sim}\,800~\mbox{keV}\). We show that the high-energy part (above \({\sim}\, 800~\mbox{keV}\)) of this distribution is responsible for the high-frequency radio emission (\({>}\, 20~\mbox{GHz}\)) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most (\({\sim}\,80~\%\)) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J. 242, 336, 1980), this thin source is found to be at temperatures T \({\sim}\,8000~\mbox{K}\) and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and \(\alpha\) particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T \({\sim}\, 5000~\mbox{K}\), below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Notes

  1. 1.

    \(1~\mbox{sfu} = 10^{-22}\mbox{W}\cdot \mbox{m}^{-2}\cdot \mbox{Hz}^{-1}\).

  2. 2.

    http://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/rstn-1-second/ .

  3. 3.

    http://hmi.stanford.edu/Description/HMI_Overview.pdf .

  4. 4.

    provided by NASA/GSFC at http://umbra.nascom.nasa.gov/goes/fits/ .

  5. 5.

    N. Vilmer, private communication.

References

  1. Avrett, E.H., Loeser, R.: 2003, Solar and stellar atmospheric modeling using the pandora computer program. In: Piskunov, N., Weiss, W.W., Gray, D.F. (eds.) Modelling of Stellar Atmospheres, IAU Symp. 210, A21.

    Google Scholar 

  2. Avrett, E.H., Loeser, R.: 2008, Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. 175, 229.

    Article  ADS  Google Scholar 

  3. Bagalá, L.G., Bauer, O.H., Fernández Borda, R., Francile, C., Haerendel, G., Rieger, R., Rovira, M.G.: 1999, The new H\(\alpha\) solar telescope at the German–Argentinian solar observatory. In: Wilson, A. et al. (ed.) Magnetic Fields and Solar Processes, SP-448, 469.

    Google Scholar 

  4. Bai, T.: 1982, Transport of energetic electrons in a fully ionized hydrogen plasma. Astrophys. J. 259, 341.

    Article  ADS  Google Scholar 

  5. Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131.

    Article  ADS  Google Scholar 

  6. Brown, J.C.: 1972, The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares. Solar Phys. 26, 441.

    Article  ADS  Google Scholar 

  7. Butler, S.T., Buckingham, M.J.: 1962, Energy loss of a fast ion in a plasma. Phys. Rev. 126, 1.

    MathSciNet  Article  ADS  Google Scholar 

  8. De la Luz, V., Lara, A., Raulin, J.-P.: 2011, Synthetic spectra of radio, millimeter, sub-millimeter, and infrared regimes with non-local thermodynamic equilibrium approximation. Astrophys. J. 737, 1.

    Article  ADS  Google Scholar 

  9. De la Luz, V., Lara, A., Mendoza-Torres, J.E., Selhorst, C.L.: 2010, Pakal: a three-dimensional model to solve the radiative transfer equation. Astrophys. J. Suppl. 188, 437.

    Article  ADS  Google Scholar 

  10. Deming, D., Jennings, D.E., Jefferies, J., Lindsey, C.: 1991, In: Cox, A.N., Livingston, W.C., Matthews, M.S. (eds.) Physics of the Infrared Spectrum, 933.

  11. Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241.

    Article  ADS  Google Scholar 

  12. Gould, R.J.: 1972a, Energy loss of a relativistic ion in a plasma. Physica 58, 379.

    Article  ADS  Google Scholar 

  13. Gould, R.J.: 1972b, Energy loss of fast electrons and positrons in a plasma. Physica 60, 145.

    Article  ADS  Google Scholar 

  14. Guidice, D.A.: 1979, Sagamore Hill Radio Observatory, Air Force Geophysics Laboratory, Hanscom air force base, Massachusetts 01731. Report. Bull. Am. Astron. Soc. 11, 311.

    ADS  Google Scholar 

  15. Heinzel, P., Avrett, E.H.: 2012, Optical-to-radio continua in solar flares. Solar Phys. 277, 31.

    Article  ADS  Google Scholar 

  16. Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Kingsley, R.K., Kingsley, J.S., Kudaka, A.S., Marcon, R., Martin, R., Marun, A., Melo, A.M., Pereyra, P., Raulin, J., Rose, T., Silva Valio, A., Walber, A., Wallace, P., Yakubovich, A., Zakia, M.B.: 2008, New telescopes for ground-based solar observations at submillimeter and mid-infrared. In: Soc. Photo-Optical Instr. Eng. (SPIE) Conf. Ser., 7012, 70120L.

    Google Scholar 

  17. Kaufmann, P., White, S.M., Freeland, S.L., Marcon, R., Fernandes, L.O.T., Kudaka, A.S., de Souza, R.V., Aballay, J.L., Fernandez, G., Godoy, R., Marun, A., Valio, A., Raulin, J.-P., Giménez de Castro, C.G.: 2013, A bright impulsive solar burst detected at 30 THz. Astrophys. J. 768, 134.

    Article  ADS  Google Scholar 

  18. Kaufmann, P., Marcon, R., Abrantes, A., Bortolucci, E.C., Fernandes, L.O.T., Kropotov, G.I., Kudaka, A.S., Machado, N., Marun, A., Nikolaev, V., Silva, A., da Silva, C.S., Timofeevsky, A.: 2014, THz photometers for solar flare observations from space. Exp. Astron. 37, 579.

    Article  ADS  Google Scholar 

  19. Kaufmann, P., White, S.M., Marcon, R., Kudaka, A.S., Cabezas, D.P., Cassiano, M.M., Francile, C., Fernandes, L.O.T., Hidalgo Ramirez, R.F., Luoni, M., Marun, A., Pereyra, P., de Souza, R.V.: 2015, Bright 30 THz impulsive solar bursts. J. Geophys. Res. 120, 4155.

    Article  Google Scholar 

  20. Kašparová, J., Heinzel, P., Karlický, M., Moravec, Z., Varady, M.: 2009a, Far-IR and radio thermal continua in solar flares. Cent. Eur. Astrophys. Bull. 33, 309.

    ADS  Google Scholar 

  21. Kašparová, J., Varady, M., Heinzel, P., Karlický, M., Moravec, Z.: 2009b, Response of optical hydrogen lines to beam heating. I. Electron beams. Astron. Astrophys. 499, 923.

    Article  ADS  Google Scholar 

  22. Kerr, G.S., Fletcher, L.: 2014, Physical properties of white-light sources in the 2011 February 15 solar flare. Astrophys. J. 783, 98.

    Article  ADS  Google Scholar 

  23. Krucker, S., Saint-Hilaire, P., Hudson, H.S., Haberreiter, M., Martinez-Oliveros, J.C., Fivian, M.D., Hurford, G., Kleint, L., Battaglia, M., Kuhar, M., Arnold, N.G.: 2015, Co-spatial white light and hard X-ray flare footpoints seen above the solar limb. Astrophys. J. 802, 19.

    Article  ADS  Google Scholar 

  24. Machado, M.E., Emslie, A.G., Avrett, E.H.: 1989, Radiative backwarming in white-light flares. Solar Phys. 124, 303.

    Article  ADS  Google Scholar 

  25. Machado, M.E., Avrett, E.H., Vernazza, J.E., Noyes, R.W.: 1980, Semiempirical models of chromospheric flare regions. Astrophys. J. 242, 336.

    Article  ADS  Google Scholar 

  26. MacKinnon, A.L., Toner, M.P.: 2003, Warm thick target solar gamma-ray source revisited. Astron. Astrophys. 409, 745.

    Article  ADS  Google Scholar 

  27. Marcon, R., Kaufmann, P., Melo, A.M., Kudaka, A.S., Tandberg-Hanssen, E.: 2008, Association of mid-infrared solar plages with calcium K line emissions and magnetic structures. Publ. Astron. Soc. Pac. 120, 16.

    Article  ADS  Google Scholar 

  28. Mauas, P.J.D., Machado, M.E., Avrett, E.H.: 1990, The white-light flare of 1982 June 15 – Models. Astrophys. J. 360, 715.

    Article  ADS  Google Scholar 

  29. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791.

    Article  ADS  Google Scholar 

  30. Metcalf, T.R., Canfield, R.C., Saba, J.L.R.: 1990, Flare heating and ionization of the low solar chromosphere. II – Observations of five solar flares. Astrophys. J. 365, 391.

    Article  ADS  Google Scholar 

  31. Ohki, K., Hudson, H.S.: 1975, The solar-flare infrared continuum. Solar Phys. 43, 405.

    Article  ADS  Google Scholar 

  32. Olive, K.A., Particle Data Group: 2014, Review of particle physics. Chin. Phys. C 38(9), 090001.

    Article  ADS  Google Scholar 

  33. Penn, M., Jennings, D., Jhabvala, M., Lunsford, A.: 2015, Infrared flare observations at 5 and 10 microns. In: AAS/AGU Triennial Earth–Sun Summit 1, 30704.

    Google Scholar 

  34. Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 16, 1.

    Article  ADS  Google Scholar 

  35. Pick, M., Klein, K.-L., Trottet, G.: 1990, Meter-decimeter and microwave radio observations of solar flares. Astrophys. J. Suppl. 73, 165.

    Article  ADS  Google Scholar 

  36. Ramaty, R.: 1969, Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophys. J. 158, 753.

    Article  ADS  Google Scholar 

  37. Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H.: 1994, Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares. Astrophys. J. 436, 941.

    Article  ADS  Google Scholar 

  38. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207.

    Article  ADS  Google Scholar 

  39. Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D.: 2002, RHESSI data analysis software: rationale and methods. Solar Phys. 210, 165.

    Article  ADS  Google Scholar 

  40. Trottet, G., Klein, K.-L.: 2013, Far infrared solar physics. Mem. Soc. Astron. Ital. 84, 405.

    ADS  Google Scholar 

  41. Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., Kuznetsov, A., Sunyaev, R., Terekhov, O.: 1998, A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare. Astron. Astrophys. 334, 1099.

    ADS  Google Scholar 

  42. Trottet, G., Rolli, E., Magun, A., Barat, C., Kuznetsov, A., Sunyaev, R., Terekhov, O.: 2000, The fast and slow H\(\alpha\) chromospheric responses to non-thermal particles produced during the 1991 March 13 hard X-ray/gamma-ray flare at ˜ 08 UTC. Astron. Astrophys. 356, 1067.

    ADS  Google Scholar 

  43. Trottet, G., Krucker, S., Lüthi, T., Magun, A.: 2008, Radio submillimeter and \(\gamma\)-ray observations of the 2003 October 28 solar flare. Astrophys. J. 678, 509.

    Article  ADS  Google Scholar 

  44. Valio, A., Kaufmann, P., Giménez de Castro, C.G., Raulin, J.-P., Fernandes, L.O.T., Marun, A.: 2013, POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges. Solar Phys. 283, 651.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Chambe and K.-L. Klein for their suggestions and critical comments. We thank STFC for support through grant ST/L000741/1 (ALM). Some of the ALM contribution was made while on study leave at CRAAM, Mackenzie Presbyterian University, São Paulo with FAPESP financial support. PJAS acknowledges the European Community’s Seventh Framework Programme (FP7/2007 – 2013) under grant agreement no. 606862 (F-CHROMA) for financial support. VDL acknowledges Catedras-CONACyT project 1045. This research was partially supported by the Brazilian agencies FAPESP (contract 2013/24155-3, 2015/13596-4), CNPq (contract 312788/2013-4), Mackpesquisa and U.S. AFOSR. We are grateful to the referee, Säm Krucker, for his constructive recommendations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.-P. Raulin.

Appendix

Appendix

To compute the energy deposited by accelerated electrons, protons, and \(\alpha\) particles in the chromosphere as a function of depth, we injected particles with an energy spectrum \(F_{0}(E)\) (\(\mbox{MeV}^{-1}\)) at the top of the atmosphere. We parametrized the position in the atmosphere using the hydrogen column depth \(N\). The energy deposited (\(\mbox{erg}\,\mbox{cm}^{-1}\)) at depth \(N\) is (following Emslie, 1978)

$$ \Theta(N) = \int_{E_{\min}(N)}^{\infty}\frac{F_{0}(E_{0})}{v(E)} \biggl\vert \frac{\mathrm{d}E}{\mathrm{d}t}(E,N)\biggr\vert \mathrm{d}E_{0}. $$
(4)

Here \(E_{\min}(N)\) is the minimum energy of a particle that can reach depth \(N\). In Equation (4) \(E\) should be understood as depending on \(E_{0}\) and \(N\): it is the energy that a particle of initial energy \(E_{0}\) has when it has reached depth \(N\).

An ion of energy \(E\) and charge \(z\) loses energy with depth at a rate given by (Gould, 1972b; Emslie, 1978; Olive and Particle Data Group, 2014)

$$ \frac{\mathrm{d}E}{\mathrm{d}N} = -\frac{K}{\beta^{2}} \Lambda_{\mathrm{eff}}(E,N). $$
(5)

Here \(\beta\) is the particle speed in units of the speed of light, \(K\) is given by

$$\begin{aligned} \begin{aligned} K &= \frac{4 \pi e^{4}}{m_{e}c^{2}} z^{2},\\ \Lambda_{\mathrm{eff}}(E,N) &= x \Lambda + (1-x) \Lambda', \end{aligned} \end{aligned}$$
(6)

where \(x\) is the degree of ionization and \(\Lambda\) and \(\Lambda'\) are the Coulomb logarithms appropriate for slowing on electrons and on neutral atoms, respectively. For ions, expressions for \(\Lambda\) are given e.g. by Butler and Buckingham (1962), Gould (1972a). For \(\Lambda'\) we used the Bethe-Bloch form (Olive and Particle Data Group, 2014), neglecting the correction for the polarization of the medium, which is negligible in the low-density conditions of the solar atmosphere. We estimated the effects of the atmospheric chemical composition on energy loss by multiplying \(\Lambda'\) by

$$\sum_{n} \frac{a_{n}}{a_{H}} \frac{Z_{n}}{A_{n}} = 1.16, $$

where \(n\) sums over atomic species and \(A_{n}\), \(Z_{n}\) and \(a_{n}\) are the atomic number, atomic weight, and abundance relative to hydrogen of species \(n\). We also generalized \(x = n_{e}/n_{H}\) so that it is no longer quite the degree of ionization and may take values \({>}\,1\), dependent on the local electron density.

\(\Lambda\) and \(\Lambda'\) for electrons are given by Gould (1972a), Emslie (1978). By using only Equation (5), we neglected pitch-angle scattering. Scattering in angle is unimportant for fast ions and relativistic electrons – the only particles that can reach the \(\mathrm{LC7}_{\mathrm{l}}\) layer. For nonrelativistic electrons it reduces the mean range by two thirds (Brown, 1972), although dispersion means that electrons will stop and deposit energy over a range of depths up to their full vertical stopping depth (Bai, 1982). For the present purposes of estimation, we completely neglected pitch-angle scattering.

Figure 7 shows the value of \(\Lambda_{\mathrm{eff}}\) throughout the chromospheric portion of the C7 atmosphere of Avrett and Loeser (2003) for protons of energies 1, 10, and 100 MeV. The importance of retaining the energy dependence of \(\Lambda\) has been emphasized elsewhere (MacKinnon and Toner, 2003). The variable degree of ionization means that \(\Lambda_{\mathrm{eff}}\) also strongly depends on position. Thus the energy loss rate of Equation (5) is not separable in energy and depth, and analytical heating rates like those of Emslie (1978) may not be used (although an energy loss rate appropriate to a completely neutral atmosphere would give a good approximation below about 1000 km).

Figure 7
figure7

The effective Coulomb logarithm, \(\Lambda_{\mathrm{eff}}\) through the atmosphere for protons of energy 1, 10 and 100 MeV.

To evaluate the energy deposition \(\Theta\), we need to assume a form for \(F_{0}(E_{0})\), e.g. a single power-law:

$$ F_{0}(E_{0}) = \frac{\mathcal{F}_{0}}{E_{*}} (\delta-1) \biggl(\frac{E_{0}}{E_{*}} \biggr)^{-\delta}, $$
(7)

where \(\mathcal{F}_{0}\) is the number of particles injected above energy \(E_{*}\). Then applying Equation (5) in Equation (4) gives

$$ \Theta(N) = 8.16 \times10^{-31} z^{2} n_{H}(N) \mathcal{F}_{0} E_{*}^{\delta-1}(\delta-1) \int _{E_{\min}(N)}^{\infty}E^{-\delta} \frac{\Lambda_{\mathrm{eff}}(E,N)}{\beta^{2}(E)} \mathrm{d}E_{0} . $$
(8)

Again, \(E\) in the integrand of Equation (8) is understood to be a function of \(E_{0}\) and \(N\): the energy at depth \(N\) of a particle that had energy \(E_{0}\) at injection. Since we cannot obtain analytical expressions for \(E(E_{0},N)\), we calculated it by numerical integration of Equation (5), with numerical interpolation as necessary between the tabulated points of a given atmosphere model, as needed for each of the abscissae of a numerical evaluation of the energy deposition (Equation (8)). More elaborate forms of \(F_{0}(E_{0})\), e.g. the broken power-law deduced for electrons, are straightforwardly substituted in Equation (4) as necessary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trottet, G., Raulin, JP., Mackinnon, A. et al. Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT. Sol Phys 290, 2809–2826 (2015). https://doi.org/10.1007/s11207-015-0782-0

Download citation

Keywords

  • Radio bursts, microwave
  • X-ray bursts, association with flares
  • X-ray burst, spectrum
  • Chromosphere, models
  • Heating, chromospheric
  • Heating, in flares