Skip to main content
Log in

Low-Frequency Type-II Radio Detections and Coronagraph Data Employed to Describe and Forecast the Propagation of 71 CMEs/Shocks

  • Radio Heliophysics: Science and Forecasting
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Motivated by improving predictions of arrival times at Earth of shocks driven by coronal mass ejections (CMEs), we have analyzed 71 Earth-directed events in different stages of their propagation. The study is primarily based on approximated locations of interplanetary (IP) shocks derived from Type-II radio emissions detected by the Wind/WAVES experiment during 1997 – 2007. Distance–time diagrams resulting from the combination of white-light corona, IP Type-II radio, and in-situ data lead to the formulation of descriptive profiles of each CME’s journey toward Earth. Furthermore, two different methods for tracking and predicting the location of CME-driven IP shocks are presented. The linear method, solely based on Wind/WAVES data, arises after key modifications to a pre-existing technique that linearly projects the drifting low-frequency Type-II emissions to 1 AU. This upgraded method improves forecasts of shock-arrival times by almost 50 %. The second predictive method is proposed on the basis of information derived from the descriptive profiles and relies on a single CME height–time point and on low-frequency Type-II radio emissions to obtain an approximate value of the shock arrival time at Earth. In addition, we discuss results on CME–radio emission associations, characteristics of IP propagation, and the relative success of the forecasting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bale, S.D., Reiner, M.J., Bougeret, J.-L., Kaiser, M.L., Krucker, S., Larson, D.E., Lin, R.P.: 1999, The source region of an interplanetary type II radio burst. Geophys. Res. Lett. 26, 1573. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bisi, M.M., Breen, A.R., Jackson, B.V., Fallows, R.A., Walsh, A.P., Mikić, Z., Riley, P., Owen, C.J., Gonzalez-Esparza, A., Aguilar-Rodriguez, E., Morgan, H., Jensen, E.A., Wood, A.G., Owens, M.J., Tokumaru, M., Manoharan, P.K., Chashei, I.V., Giunta, A.S., Linker, J.A., Shishov, V.I., Tyul’Bashev, S.A., Agalya, G., Glubokova, S.K., Hamilton, M.S., Fujiki, K., Hick, P.P., Clover, J.M., Pintér, B.: 2010, From the Sun to the Earth: the 13 May 2005 coronal mass ejection. Solar Phys. 265, 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., King, J.H., Schwenn, R.: 1984, Solar radio burst and in situ determination of interplanetary electron density. Solar Phys. 90, 401. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Erickson, W.C.: 2005, Solar type II radio bursts and IP type II events. Astrophys. J. 623, 1180. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Lee, J., Moon, Y.-J., Dryer, M., Bong, S.-C., Kim, Y.-H., Park, Y.D.: 2007, A study of CME and type II shock kinematics based on coronal density measurement. Astron. Astrophys. 461, 1121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Moon, Y.-J., Shanmugaraju, A., Kwon, R.-Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cid, C., Cremades, H., Aran, A., Mandrini, C., Sanahuja, B., Schmieder, B., Menvielle, M., Rodriguez, L., Saiz, E., Cerrato, Y., Dasso, S., Jacobs, C., Lathuillere, C., Zhukov, A.: 2012, Can a halo CME from the limb be geoeffective? J. Geophys. Res. (Space Phys.) 117, 11102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605(2), 902. http://stacks.iop.org/0004-637X/605/i=2/a=902 .

    Article  ADS  Google Scholar 

  • Cremades, H., St. Cyr, O.C., Kaiser, M.L.: 2007, A tool to improve space weather forecasts: kilometric radio emissions from Wind/WAVES. Space Weather 5, 8001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dal Lago, A., Schwenn, R., Gonzalez, W.D.: 2003, Relation between the radial speed and the expansion speed of coronal mass ejections. Adv. Space Res. 32, 2637. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI .

    Article  ADS  Google Scholar 

  • Dryer, M., Smart, D.F.: 1984, Dynamical models of coronal transients and interplanetary disturbances. Adv. Space Res. 4, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dulk, G.A., Leblanc, Y., Bougeret, J.-L.: 1999, Type II shock and CME from the corona to 1 AU. Geophys. Res. Lett. 26, 2331. DOI . ADS .

    Article  ADS  Google Scholar 

  • Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses, J.D., Newmark, J.S., Socker, D.G., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Feng, X.S., Zhang, Y., Yang, L.P., Wu, S.T., Dryer, M.: 2009, An operational method for shock arrival time prediction by one-dimensional CESE-HD solar wind model. J. Geophys. Res. (Space Phys.) 114, 10103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru, M., Kojima, M.: 2001, Improvements to the HAF solar wind model for space weather predictions. J. Geophys. Res. 106, 20985. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fry, C.D., Dryer, M., Smith, Z., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2003, Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res. (Space Phys.) 108, 1070. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gonzalez-Esparza, A., Aguilar-Rodriguez, E.: 2009, Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions. Ann. Geophys. 27, 3957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001a, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001b, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Manoharan, P.K., Howard, R.A.: 2005a, An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A.: 2005b, Coronal mass ejections and other extreme characteristics of the 2003 October – November solar eruptions. J. Geophys. Res. (Space Phys.) 110, 9. DOI . ADS .

    Google Scholar 

  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M.L., Howard, R.A.: 2005c, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. (Space Phys.) 110, 12. DOI . ADS .

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2008, Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoang, S., Lacombe, C., MacDowall, R.J., Thejappa, G.: 2007, Radio tracking of the interplanetary coronal mass ejection driven shock crossed by Ulysses on 10 May 2001. J. Geophys. Res. (Space Phys.) 112, 9102. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI .

    Article  ADS  Google Scholar 

  • Iju, T., Tokumaru, M., Fujiki, K.: 2013, Radial speed evolution of interplanetary coronal mass ejections during solar cycle 23. Solar Phys. 288, 331. DOI . ADS .

    Article  ADS  Google Scholar 

  • Joshi, A.D., Srivastava, N.: 2011, Acceleration of coronal mass ejections from three-dimensional reconstruction of STEREO images. Astrophys. J. 739, 8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Solar Phys. 254, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H.: 2005, Type II radio emission predictions: sources of coronal and interplanetary spectral structure. J. Geophys. Res. (Space Phys.) 110, 1101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H., Robinson, P.A., Kuncic, Z.: 2001, Theory of type II radio emission from the foreshock of an interplanetary shock. J. Geophys. Res. 106, 25041. DOI . ADS .

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H., Robinson, P.A., Kuncic, Z.: 2003, Theoretically predicted properties of type II radio emission from an interplanetary foreshock. J. Geophys. Res. (Space Phys.) 108, 1126. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.-L.: 2001, Tracing shock waves from the corona to 1 AU: type II radio emission and relationship with CMEs. J. Geophys. Res. 106, 25301. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Lugaz, N., Möstl, C., Davies, J.A., Bale, S.D., Lin, R.P.: 2013, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. 769, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Al-Haddad, N.: 2014, Complex evolution of coronal mass ejections in the inner heliosphere as revealed by numerical simulations and STEREO observations: a review. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) IAU Symposium 300, Cambridge University Press, Cambridge, 255. DOI . ADS .

    Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII CS-411, Astron. Soc. Pacific, San Francisco, 251. ADS .

    Google Scholar 

  • McKenna-Lawlor, S.M.P., Dryer, M., Smith, Z., Kecskemety, K., Fry, C.D., Sun, W., Deehr, C.S., Berdichevsky, D., Kudela, K., Zastenker, G.: 2002, Arrival times of flare/halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations. Ann. Geophys. 20, 917. DOI . ADS .

    Article  ADS  Google Scholar 

  • McKenna-Lawlor, S.M.P., Dryer, M., Kartalev, M.D., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Kecskemety, K., Kudela, K.: 2006, Near real-time predictions of the arrival at Earth of flare-related shocks during solar cycle 23. J. Geophys. Res. (Space Phys.) 111, 11103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Michałek, G., Gopalswamy, N., Yashiro, S.: 2003, A new method for estimating widths, velocities, and source location of halo coronal mass ejections. Astrophys. J. 584, 472. DOI .

    Article  ADS  Google Scholar 

  • Michałek, G., Gopalswamy, N., Lara, A., Manoharan, P.K.: 2004, Arrival time of halo coronal mass ejections in the vicinity of the Earth. Astron. Astrophys. 423, 729. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mishra, W., Srivastava, N.: 2013, Estimating the arrival time of earth-directed coronal mass ejections at in situ spacecraft using COR and HI observations from STEREO. Astrophys. J. 772, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Davies, J.A.: 2013, Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Solar Phys. 285, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. (Space Phys.) 110, 2106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pinter, S.: 1982, Experimental study of flare-generated collisionless interplanetary shock wave propagation. Space Sci. Rev. 32, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pinter, S., Dryer, M.: 1990, Conversion of piston-driven shocks from powerful solar flares to blast waves in the solar wind. Bull. Astron. Inst. Czechoslov. 41, 137. ADS .

    ADS  Google Scholar 

  • Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J.L., Manoharan, P.K., Elliott, H.A.: 2007, CME propagation characteristics from radio observations. Solar Phys. 244, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pulupa, M.P., Bale, S.D., Kasper, J.C.: 2010, Langmuir waves upstream of interplanetary shocks: dependence on shock and plasma parameters. J. Geophys. Res. (Space Phys.) 115, 4106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qin, G., Zhang, M., Rassoul, H.K.: 2009, Prediction of the shock arrival time with SEP observations. J. Geophys. Res. (Space Phys.) 114, 9104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Fainberg, J., Bougeret, J.-L., Stone, R.G.: 1997, Remote radio tracking of interplanetary CMEs. In: Wilson, A. (ed.) Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, SP-415, ESA, Noordwijk, 183. ADS .

    Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Fainberg, J., Stone, R.G.: 1998a, A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks. J. Geophys. Res. 103, 29651. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Fainberg, J., Bougeret, J.-L., Stone, R.G.: 1998b, On the origin of radio emissions associated with the January 6–11, 1997, CME. Geophys. Res. Lett. 25, 2493. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. DOI .

    Article  ADS  Google Scholar 

  • Smart, D.F., Shea, M.A.: 1985, A simplified model for timing the arrival of solar flare-initiated shocks. J. Geophys. Res. 90, 183. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, Z., Dryer, M.: 1990, MHD study of temporal and spatial evolution of simulated interplanetary shocks in the ecliptic plane within 1 AU. Solar Phys. 129, 387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, Z., Murtagh, W., Detman, T., Dryer, M., Fry, C.D., Wu, C.-C.: 2003, Study of solar-based inputs into space weather models that predict interplanetary shock-arrivals at Earth. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment SP-535, ESA, Noordwijk, 547. ADS .

    Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Taktakishvili, A., Kuznetsova, M., MacNeice, P., Hesse, M., Rastätter, L., Pulkkinen, A., Chulaki, A., Odstrcil, D.: 2009, Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7, 3004. DOI . ADS .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2001, Dynamics of solar coronal eruptions. J. Geophys. Res. 106, 25249. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. (Space Phys.) 107, 1019. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res. (Space Phys.) 109, 3109. DOI .

    Article  ADS  Google Scholar 

  • Xie, H., Gopalswamy, N., Ofman, L., St. Cyr, O.C., Michalek, G., Lara, A., Yashiro, S.: 2006, Improved input to the empirical coronal mass ejection (CME) driven shock arrival model from CME cone models. Space Weather 4, 10002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Xie, H., St. Cyr, O.C., Gopalswamy, N., Odstrcil, D., Cremades, H.: 2013, Understanding shock dynamics in the inner heliosphere with modeling and type II radio data: a statistical study. J. Geophys. Res. (Space Phys.) 118, 4711. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. (Space Phys.) 109, 7105. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. (Space Phys.) 107, 1223. DOI .

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Bemporad, A., Jacobs, C., Mierla, M., Poedts, S., Zuccarello, F.: 2012, The role of streamers in the deflection of coronal mass ejections: comparison between STEREO three-dimensional reconstructions and numerical simulations. Astrophys. J. 744, 66. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H. Cremades and F.A. Iglesias acknowledge the funding of project CONVPICTPROM01 2007 of Universidad Tecnológica Nacional – Facultad Regional Mendoza. H. Cremades is a member of the Carrera del Investigador Científico (CONICET). O.C. St. Cyr, H. Xie, and N. Gopalswamy gratefully acknowledge support from NASA’s LWS TR&T program through grant 8-LWSTRT08-0029. The authors thank Ernesto Aguilar-Rodríguez and Craig Markwardt for their support on SolarSoft and IDL routines, Cathie Meetre for guidance on neural-network usage for automated density detection, Dibyendu Nandy for providing the full list of CME events corrected by the HNK method, and Ivo Dohmen for disinterested help, as well as the referee for helpful comments and suggestions.

The SOHO/LASCO data are produced by an international consortium of the NRL (USA), MPI für Sonnensystemforschung (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. The STEREO/SECCHI project is an international consortium of the NRL, LMSAL and NASA/GSFC (USA), RAL and Univ. Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA and IAS (France). SDO/AIA and SDO/HMI data are courtesy of the NASA/SDO and the AIA and HMI Science Teams. This article uses data from the SOHO/LASCO CME catalog generated and maintained at the CDAW Data Center by NASA and the CUA in cooperation with NRL, from the CACTus CME catalog generated and maintained by the SIDC at the ROB, and the SEEDS project supported by the NASA/LWS and AISRP programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cremades.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Radio Heliophysics: Science and Forecasting

Guest Editors: Mario M. Bisi, Bernard V. Jackson, and J. Americo Gonzalez-Esparza

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremades, H., Iglesias, F.A., St. Cyr, O.C. et al. Low-Frequency Type-II Radio Detections and Coronagraph Data Employed to Describe and Forecast the Propagation of 71 CMEs/Shocks. Sol Phys 290, 2455–2478 (2015). https://doi.org/10.1007/s11207-015-0776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0776-y

Keywords

Navigation