Skip to main content
Log in

Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

  • Solar and Stellar Flares
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (\({\approx}\,40~\%\)). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996, Plasmoid formation in a single sheared arcade and application to coronal mass ejections. Astron. Astrophys. 306, 913. ADS .

    ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Amari, T., Aly, J.-J., Luciani, J.-F., Mikic, Z., Linker, J.: 2011, Coronal mass ejection initiation by converging photospheric flows: Toward a realistic model. Astrophys. J. Lett. 742, L27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W.: 2012, Magnetic flux emergence: A precursor of solar plasma expulsion. Astron. Astrophys. 537, A62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Török, T.: 2008, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492, L35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Démoulin, P., Grappin, R.: 2005, Equilibrium and observational properties of line-tied twisted flux tubes. Astron. Astrophys. 430, 1067. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burtseva, O., Petrie, G.: 2013, Magnetic flux changes and cancellation associated with X-class and M-class flares. Solar Phys. 283, 429. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Hémoux, J.C., Csepura, G., Hagyard, M.J.: 1993, Evidence for magnetic reconnection in solar flares. Astron. Astrophys. 271, 292. ADS .

    ADS  Google Scholar 

  • Feynman, J., Martin, S.F.: 1995, The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Res. 100, 3355. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1995, Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y.: 2006, The partial expulsion of a magnetic flux rope. Astrophys. J. Lett. 637, L65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Wallace, A.J.: 2011, Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hagyard, M.J., Venkatakrishnan, P., Smith, J.B. Jr.: 1990, Nonpotential magnetic fields at sites of gamma-ray flares. Astrophys. J. Suppl. 73, 159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., Luis, G., Mills, N., Purdy, T., Henney, C., Holland, D., Winter, J.: 2011, Full-disk solar H-alpha images from GONG. In: AAS/Solar Physics Division Abstracts #42, 1745. ADS .

    Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaneko, T., Yokoyama, T.: 2014, Simulation study of solar plasma eruptions caused by interactions between emerging flux and coronal arcade fields. Astrophys. J. 796, 44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: 2012, Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leake, J.E., Linton, M.G., Antiochos, S.K.: 2014, Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys. J. 787, 46. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, H., Sakurai, T., Ichimoto, K., UeNo, S.: 2000, Magnetic field evolution leading to solar flares I. Cases with low magnetic shear and flux emergence. Publ. Astron. Soc. Japan 52, 465. ADS .

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T.G., Isenberg, P.A.: 2001, Prominence eruptions and coronal mass ejections triggered by newly emerging flux. J. Geophys. Res. 106, 25053. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lites, B.W.: 2005, Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. Astrophys. J. 622, 1275. DOI . ADS .

    Article  ADS  Google Scholar 

  • Livi, S.H.B., Martin, S., Wang, H., Ai, G.: 1989, The association of flares to cancelling magnetic features on the Sun. Solar Phys. 121, 197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Louis, R.E., Puschmann, K.G., Kliem, B., Balthasar, H., Denker, C.: 2014, Sunspot splitting triggering an eruptive flare. Astron. Astrophys. 562, A110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1996, Solar activity and the corona. Solar Phys. 167, 217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., van Ballegooijen, A.A.: 2006, Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI . ADS .

    Article  ADS  Google Scholar 

  • Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (invited review). Solar Phys. 182, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F., Dezso, L., Antalova, A., Kucera, A., Harvey, K.L.: 1982, Emerging magnetic flux, flares and filaments – FBS interval 16 – 23 June 1980. Adv. Space Res. 2, 39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martres, M.-J., Michard, R., Soru-Iscovici, I., Tsap, T.T.: 1968, Étude de la localisation des éruptions dans la structure magnétique évolutive des régions actives solaires. Solar Phys. 5, 187. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mikic, Z., Linker, J.A.: 1994, Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Roumeliotis, G., Sturrock, P.A., Antiochos, S.K.: 1994, A numerical study of the sudden eruption of sheared magnetic fields. Astrophys. J. 423, 847. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rust, D.M.: 1972, Flares and changing magnetic fields. Solar Phys. 25, 141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sakajiri, T., Brooks, D.H., Yamamoto, T., Shiota, D., Isobe, H., Akiyama, S., Ueno, S., Kitai, R., Shibata, K.: 2004, A study of a tiny two-ribbon flare driven by emerging flux. Astrophys. J. 616, 578. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savcheva, A.S., Green, L.M., van Ballegooijen, A.A., DeLuca, E.E.: 2012, Photospheric flux cancellation and the build-up of sigmoidal flux ropes on the Sun. Astrophys. J. 759, 105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2009, Driving major solar flares and eruptions: A review. Adv. Space Res. 43, 739. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sterling, A.C., Chifor, C., Mason, H.E., Moore, R.L., Young, P.R.: 2010, Evidence for magnetic flux cancelation leading to an ejective solar eruption observed by Hinode, TRACE, STEREO, and SoHO/MDI. Astron. Astrophys. 521, A49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS .

    ADS  Google Scholar 

  • Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, H.: 2006, Rapid changes of photospheric magnetic fields around flaring magnetic neutral lines. Astrophys. J. 649, 490. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, J., Shi, Z.: 1993, The flare-associated magnetic changes in an active region. II – Flux emergence and cancellation. Solar Phys. 143, 119. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1999, Filament eruptions near emerging bipoles. Astrophys. J. Lett. 510, L157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Xu, X.-Y., Chen, P.-F., Fang, C.: 2005, A parametric survey of the CME triggering process by numerical simulations. Chin. J. Astron. Astrophys. 5, 636. DOI . ADS .

    Article  ADS  Google Scholar 

  • Xu, X.-Y., Fang, C., Chen, P.-F.: 2008, A statistical study on the filament eruption caused by new emerging flux. Chin. Astron. Astrophys. 32, 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Cheng, X., Ding, M.-D.: 2012, Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Commun. 3, 747. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, X., Hoeksema, J.T.: 1995, Prediction of the interplanetary magnetic field strength. J. Geophys. Res. 100, 19. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge constructive comments by the referee, which were helpful in improving the clarity of this article. R.E.L. is grateful for the financial assistance from the German Science Foundation (DFG) under grant DE 787/3-1 and the European Commission’s FP7 Capacities Programme under the Grant Agreement number 312495. G.C. and B.K. acknowledge support by the NSF under Grant No. 1249270. B.K. also acknowledges support by the DFG. HMI data are courtesy of NASA/SDO and the HMI science team. They are provided by the Joint Science Operations Center – Science Data Processing at Stanford University. EUVI-B and COR1-B images are supplied courtesy of the STEREO Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) team. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. We have used the SOHO/LASCO CME catalog, generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan E. Louis.

Additional information

Solar and Stellar Flares: Observations, Simulations, and Synergies

Guest Editors: Lyndsay Fletcher and Petr Heinzel

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MOV 8.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, R.E., Kliem, B., Ravindra, B. et al. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex. Sol Phys 290, 3641–3662 (2015). https://doi.org/10.1007/s11207-015-0726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0726-8

Keywords

Navigation