Skip to main content
Log in

Performance Testing of an Off-Limb Solar Adaptive Optics System

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Long-exposure spectro-polarimetry in the near-infrared is a preferred method to measure the magnetic field and other physical properties of solar prominences. In the past, it has been very difficult to observe prominences in this way with sufficient spatial resolution to fully understand their dynamical properties. Solar prominences contain highly transient structures, visible only at small spatial scales; hence they must be observed at sub-arcsecond resolution, with a high temporal cadence. An adaptive optics (AO) system capable of directly locking on to prominence structure away from the solar limb has the potential to allow for diffraction-limited spectro-polarimetry of solar prominences. We show the performance of the off-limb AO system and its expected performance at the desired science wavelength Ca ii 8542 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Berger, T.: 2014, Solar prominence fine structure and dynamics. In: Schmieder, B., Malherbe, J.M., Wu, S.T. (eds.) Nature of Prominences and Their Role in Space Weather, IAU Symp. 300, 15.

    Google Scholar 

  • Berger, T., Testa, P., Hillier, A., Boerner, P., Low, B.C., Shibata, K., Schrijver, C., Tarbell, T., Title, A.: 2011, Magneto-thermal convection in solar prominences. Nature 472, 197.

    Article  ADS  Google Scholar 

  • Berkefeld, T., Schmidt, D., Soltau, D., von der Lühe, O., Heidecke, F.: 2012, The GREGOR adaptive optics system. Astron. Nachr. 333, 863.

    Article  ADS  Google Scholar 

  • Berry, R., Burnell, J.: 2000, The Handbook of Astronomical Image Processing 1st. edn. Willmann-Bell, Inc., Richmond, 193.

    Google Scholar 

  • Born, M., Wolf, E.: 1999, Principles of Optics, 7th edn. Cambridge University Press, Cambridge, 528.

    Book  Google Scholar 

  • Cavallini, F.: 2006, IBIS: A new post-focus instrument for solar imaging spectroscopy. Solar Phys. 236, 415.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8(1). http://solarphysics.livingreviews.org/Articles/lrsp-2011-1/ .

  • Dai, G.M.: 1995, Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen–Loeve functions. J. Opt. Soc. Am. 12, 2182.

    Article  ADS  Google Scholar 

  • Fried, D.L.: 1965, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. 55, 1427.

    Article  ADS  Google Scholar 

  • Hardy, J.: 1998, Adaptive Optics for Astronomical Telescopes, Oxford Univ. Press, New York, 115, 308.

    Google Scholar 

  • Jaeggli, S.A., Lin, H., Mickey, D.L., Kuhn, J.R., Hegwer, S.L., Rimmele, T.R., Penn, M.J.: 2010, FIRS: A new instrument for photospheric and chromospheric studies at the DST. Mem. Soc. Astron. Ital. 81, 763.

    ADS  Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J.C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., Kilper, G.: 2010, Physics of solar prominences: I-Spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243.

    Article  ADS  Google Scholar 

  • Lukin, V.P., Fortes, B.V.: 1998, Partial correction for turbulent distortions in telescopes. Appl. Opt. 37, 4561.

    Article  ADS  Google Scholar 

  • MacKay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II-Magnetic structure and dynamics. Space Sci. Rev. 151, 333.

    Article  ADS  Google Scholar 

  • Marino, J.: 2007, Long exposure point spread function estimation from solar adaptive optics loop data. Ph.D. thesis. New Jersey Institute of Technology and Rutgers The State University of New Jersey – Newark.

  • Michau, V., Rousset, G., Fontanella, J.: 1993, Wavefront sensing from extended sources. In: Radick, R.R. (ed.) Real Time and Post Facto Solar Image Correction, Proc. 13th Sacramento Peak Summer Workshop, National Solar Observatory, 124.

    Google Scholar 

  • Noll, R.J.: 1976, Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207.

    Article  ADS  Google Scholar 

  • Orozco Suárez, D., Asensio Ramos, A., Trujillo Bueno, J.: 2013, Measuring vector magnetic fields in solar prominences. In: Guirado, J.C., Lara, L.M., Quilis, V., Gorgas, J. (eds.) Highlights of Spanish Astrophysics VII, Spanish Astronomical Society, New Mexico, 786.

    Google Scholar 

  • Rimmele, T., Berger, T., Casini, R., Elmore, D., Kuhn, J., Lin, H., Schmidt, W., Wöger, F.: 2014, Prominence science with ATST instrumentation. In: Schmieder, B., Malherbe, J.M., Wu, S.T. (eds.) Nature of Prominences and Their Role in Space Weather. IAU Symp. 300, 362.

    Google Scholar 

  • Rimmele, T.R., Marino, J.: 2011, Solar adaptive optics. Living Rev. Solar Phys. 8(2). http://solarphysics.livingreviews.org/Articles/lrsp-2011-2/ .

  • Rimmele, T.R., Radick, R.R.: 1998, Solar adaptive optics at the National Solar Observatory. In: Adaptive Optical System Technologies, Proc. SPIE 3353, 72.

    Chapter  Google Scholar 

  • Roddier, F. (ed.): 1999, Adaptive Optics in Astronomy, Cambridge Univ. Press, London.

    Google Scholar 

  • Scharmer, G.B., Dettori, P.M., Lofdahl, M.G., Shand, M.: 2003, Adaptive optics system for the new Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescope and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 370.

    Chapter  Google Scholar 

  • Tandberg-Hanssen, E.: 1995, The Nature of Solar Prominences. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Taylor, G.E., Rimmele, T.R., Marino, J., McAteer, R.T.J.: 2013, An off-limb solar adaptive optics system: Design and testing. In: Fineschi, S., Fennelly, J. (eds.) Solar Physics and Space Weather Instrumentation V, Proc. SPIE 8862, 88620C.

    Chapter  Google Scholar 

  • Taylor, G.E., Rimmele, T.R., Marino, J., Tritschler, A., McAteer, R.T.J.: 2012, Solar limb adaptive optics: A test of wavefront sensors and algorithms. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona., ASP Conf. Ser. 463, 321.

    Google Scholar 

  • Welch, P.D.: 1967, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, G.E., Schmidt, D., Marino, J. et al. Performance Testing of an Off-Limb Solar Adaptive Optics System. Sol Phys 290, 1871–1887 (2015). https://doi.org/10.1007/s11207-015-0697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0697-9

Keywords

Navigation