Solar Physics

, Volume 290, Issue 2, pp 645–655 | Cite as

Total Solar Irradiance Monitor for the FY-3B Satellite – Space Experiments and Primary Data Corrections

  • Hongrui Wang
  • Huiduan Li
  • Jin Qi
  • Wei FangEmail author


We present space experiments of the Total Solar Irradiance Monitor (TSIM) on the FY-3B satellite. The total solar irradiance (TSI) has been measured by TSIM/FY-3B continuously for nearly four years, with some short data gaps. Overlapping measurements of the TSI are provided by the TSIM, with three electrical substitution radiometers that are mounted with different alignment angles onto the leading face of the satellite. TSI measurements are normalized to a distance of 1 AU and zero velocity with respect to the Sun. The relative uncertainty in the TSI measurements is 910 parts per million. TSI values measured with TSIM/FY-3B are around 1365 W m−2, slightly lower than VIRGO/SOHO and higher than TIM/SORCE values. Most of the time, it is found that short time-scale variations in TSI detected by TSIM/FY-3B agree with other space TSI instruments.


Instrumentation Radiometers Total solar irradiance 



This work is supported by the Development Plan Project for Science and Technology of Jilin Province (No. 20130101044JC), Basic Research Project for application of Yunnan Province (No. 2012FD050) and Natural Science Foundation of China (No. 61077080). The authors would like to thank the many people engaged in the TSIM project for their hard work and technical support, including Chenghu Gong, Baoqi Song, Xin Ye in Changchun Institute of Optics, Fine Mechanics and Physic. The authors are grateful to Bingxi Yu, our previous project leader of TSIM, for his great contributions to the TSIM project. The authors would also like to thank for the valuable suggestions and help from the referee. The TSI dataset of TIM/SORCE was generously provided by the TIM team, Laboratory for Atmospheric and Space Physics, University of Colorado, USA. The TSI data of TIM/SORCE were obtained from its web site at . The unpublished TSI data of VIRGO/SOHO were provided kindly by the VIRGO team through its FTP site at PMOD/WRC, Davos, Switzerland.


  1. Anklin, M., Frohlich, C., Finsterle, W., Crommelynck, D.A., Dewitte, S.: 1998, Assessment of degradation of VIRGO radiometers on board SOHO. Metrologia 35, 685.  DOI.ADSCrossRefGoogle Scholar
  2. Booth, M.: 2014, Adaptive optical microscopy – The ongoing quest for a perfect image. Light Sci. Appl. 3, e165.  DOI.CrossRefGoogle Scholar
  3. Bretagnon, P., Francou, G.: 1988, Planetary theories in rectangular and spherical variables – VSOP-87 solutions. Astron. Astrophys. 202, 309.ADSzbMATHGoogle Scholar
  4. Fang, W., Wang, H., Li, H., Wang, Y.: 2014, Total solar irradiance monitor for FY-3A and FY-3B satellites – Instrument design. Solar Phys.  DOI.Google Scholar
  5. Fehlmann, A., Kopp, G., Schmutz, W., Winkler, R., Finsterle, W., Fox, N.: 2012, Fourth World Radiometric Reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance. Metrologia 49, S34.  DOI.ADSCrossRefGoogle Scholar
  6. Frohlich, C.: 2003, Long-term behaviour of space radiometers. Metrologia 40, S60.  DOI.ADSCrossRefGoogle Scholar
  7. Frohlich, C.: 2009, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, L27.  DOI.ADSCrossRefGoogle Scholar
  8. Frohlich, C.: 2012, Total solar irradiance observations. Surv. Geophys. 33, 453.  DOI.ADSCrossRefGoogle Scholar
  9. Frohlich, C.: 2013, Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237.  DOI.ADSCrossRefGoogle Scholar
  10. Frohlich, C., Romero, J., Roth, H., Wehrli, C., Andersen, B.N., Appourchaux, T., Domingo, V., Telljohann, U., Berthomieu, G., Delache, P., Provost, J., Toutain, T., Crommelynck, D.A., Chevalier, A., Fichot, A., Däppen, W., Gough, D., Hoeksema, T., Jiménez, A., Gómez, M.F., Herreros, J.M., Cortés, T.R., Jones, A.R., Pap, J.M., Willson, R.C.: 1995, VIRGO: Experiment for helioseismology and solar irradiance monitoring. Solar Phys. 162, 101.  DOI.ADSCrossRefGoogle Scholar
  11. Frohlich, C., Andersen, B.N., Appourchaux, T., Berthomieu, G., Crommelynck, D.A., Domingo, V., Fichot, A., Finsterle, W., Gomez, M.F., Gough, D., Jimenez, A., Leifsen, T., Lombaerts, M., Pap, J.M., Provost, J., Cortes, T.R., Romero, J., Roth, H., Sekii, T., Telljohann, U., Toutain, T., Wehrli, C.: 1997a, First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring on SOHO. Solar Phys. 170, 1.  DOI.ADSCrossRefGoogle Scholar
  12. Frohlich, C., Crommelynck, D.A., Wehrli, C., Anklin, M., Dewitte, S., Fichot, A., Finsterle, W., Jiménez, A., Chevalier, A., Roth, H.: 1997b, In-flight performance of the VIRGO solar irradiance instruments on SOHO. Solar Phys. 175, 267.  DOI.ADSCrossRefGoogle Scholar
  13. Girshovitz, P., Shaked, N.: 2014, Doubling the field of view in off-axis low-coherence interferometric imaging. Light Sci. Appl. 3, e151.  DOI.CrossRefGoogle Scholar
  14. Kopp, G., Heuerman, K., Lawrence, G.: 2005, The total irradiance monitor (TIM): Instrument calibration. Solar Phys. 230, 111.  DOI.ADSCrossRefGoogle Scholar
  15. Kopp, G., Lawrence, G.: 2005, The total irradiance monitor (TIM): Instrument design. Solar Phys. 230, 91.  DOI.ADSCrossRefGoogle Scholar
  16. Kopp, G., Lawrence, G., Rottman, G.: 2005, The total irradiance monitor (TIM): Science results. Solar Phys. 230, 129.  DOI.ADSCrossRefGoogle Scholar
  17. Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706.  DOI.ADSCrossRefGoogle Scholar
  18. Kopp, G., Fehlmann, A., Finsterle, W., Harber, D., Heuerman, K., Willson, R.: 2012, Total solar irradiance data record accuracy and consistency improvements. Metrologia 49, S29.  DOI.ADSCrossRefGoogle Scholar
  19. Liebetraut, P., Petsch, S., Liebeskind, J., Zappe, H.: 2013, Elastomeric lenses with tunable astigmatism. Light Sci. Appl. 2, e98.  DOI.CrossRefGoogle Scholar
  20. Meftah, M., Dewitte, S., Irbah, A., Chevalier, A., Conscience, C., Crommelynck, D., Janssen, E., Mekaoui, S.: 2014, SOVAP/Picard, a spaceborne radiometer to measure the total solar irradiance. Solar Phys. 289, 1885.  DOI.ADSCrossRefGoogle Scholar
  21. Mekaoui, S., Dewitte, S., Conscience, C., Chevalier, A.: 2010, Total solar irradiance absolute level from DIARAD/SOVIM on the international space station. Adv. Space Res. 45, 1393.  DOI.ADSCrossRefGoogle Scholar
  22. Memarian, M., Eleftheriades, G.: 2013, Light concentration using hetero-junctions of anisotropic low permittivity metamaterials. Light Sci. Appl. 2, e114.  DOI.CrossRefGoogle Scholar
  23. Rubenchik, A., Fedoruk, M., Turitsyn, S.: 2014, The effect of self-focusing on laser space-debris cleaning. Light Sci. Appl. 3, e159.  DOI.CrossRefGoogle Scholar
  24. Wang, H., Li, H., Fang, W.: 2014, Timing parameter optimization for comparison experiments of TSIM. Appl. Opt. 53, 1718.  DOI.ADSCrossRefGoogle Scholar
  25. Witte, S., Tenner, V., Noom, D., Eikema, K.: 2014, Lensless diffractive imaging with ultra-broadband table-top sources: From infrared to extreme-ultraviolet wavelengths. Light Sci. Appl. 3, e163.  DOI.CrossRefGoogle Scholar
  26. Yang, Z., Lu, N., Shi, J., Zhang, P., Dong, C., Yang, J.: 2012, Overview of FY-3 payload and ground application system. IEEE Trans. Geosci. Remote Sens. 50, 4846.  DOI.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.Department of Chemistry and Life ScienceChuxiong Normal UniversityChuxiongChina
  3. 3.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations