Advertisement

Solar Physics

, Volume 290, Issue 2, pp 527–552 | Cite as

Evolution and Consequences of Interacting CMEs of 9 – 10 November 2012 Using STEREO/SECCHI and In Situ Observations

  • Wageesh MishraEmail author
  • Nandita Srivastava
  • D. Chakrabarty
Article

Abstract

Understanding the kinematic evolution of coronal mass ejections (CMEs) in the heliosphere is important to estimate their arrival time at Earth. The kinematics of CMEs can change when they interact or collide with each other as they propagate in the heliosphere. In this article, we analyze the collision and post-interaction characteristics of two Earth-directed CMEs that were launched successively on 9 and 10 November 2012. To do this, we used white-light imaging observations from STEREO/SECCHI and in situ observations taken from the Wind spacecraft. We tracked two density-enhancement features associated with the leading and trailing edge of the 9 November CME and one density enhanced feature associated with the leading edges of the 10 November CME by constructing J-maps. We found that the leading edge of the 10 November CME interacted with the trailing edge of the 9 November CME. We also estimated the kinematics of these features of the CMEs and found a significant change in their dynamics after interaction. In in situ observations, we identified distinct structures associated with interacting CMEs and also observed heating and compression as signatures of their interaction. Our analysis shows an improvement in the arrival-time prediction of CMEs when their post-collision dynamics are used instead of the pre-collision dynamics. By estimating the true masses and speeds of these colliding CMEs, we investigated the nature of the observed collision, which is found to be almost perfectly inelastic. The investigation also places in perspective the geomagnetic consequences of the two CMEs and their interaction in terms of occurrence of geomagnetic storms and triggering of magnetospheric substorms.

Keywords

Coronal mass ejections Heliospheric imagers STEREO 

Notes

Acknowledgements

We acknowledge the UK Solar System Data Centre for providing the processed Level-2 STEREO/HI data. The in situ measurements of solar wind data from ACE and Wind spacecraft were obtained from the NASA CDAweb ( http://cdaweb.gsfc.nasa.gov/ ). We also acknowledge the use of DBM, developed by Bojan Vršnak and available at http://oh.geof.unizg.hr/CADBM/cadbm.php , in this study. We also thank the referee for useful comments that helped us improve the manuscript. The work by N.S. partially contributes to the research for European Union Seventh Framework Programme (FP7/2007-2013) for the Coronal Mass Ejections and Solar Energetic Particles (COMESEP) project under Grant Agreement No. 263252.

References

  1. Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, San Diego, 150. Google Scholar
  2. Burlaga, L.F., Behannon, K.W., Klein, L.W.: 1987, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725.  DOI. ADSCrossRefGoogle Scholar
  3. Burlaga, L.F., Lemaire, J.F.: 1978, Interplanetary magnetic holes – Theory. J. Geophys. Res. 83, 5157.  DOI. ADSCrossRefGoogle Scholar
  4. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266.  DOI. CrossRefGoogle Scholar
  5. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135.  DOI. ADSCrossRefGoogle Scholar
  6. Chakrabarty, D., Sekar, R., Narayanan, R., Devasia, C.V., Pathan, B.M.: 2005, Evidence for the interplanetary electric field effect on the OI 630.0 nm airglow over low latitude. J. Geophys. Res. 110, A11301.  DOI. ADSCrossRefGoogle Scholar
  7. Colaninno, R.C., Vourlidas, A.: 2009, First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. Astrophys. J. 698, 852.  DOI. ADSCrossRefGoogle Scholar
  8. Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. 118, 6866.  DOI. CrossRefGoogle Scholar
  9. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., Davis, C.J., Eyles, C.J., Crothers, S.R., Brown, D.S.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the heliospheric imagers on STEREO. Geophys. Res. Lett. 36, 2102.  DOI. ADSCrossRefGoogle Scholar
  10. Davies, J.A., Perry, C.H., Trines, R.M.G.M., Harrison, R.A., Lugaz, N., Möstl, C., Liu, Y.D., Steed, K.: 2013, Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalised self-similarly expanding circular geometry. Astrophys. J. 777, 167.  DOI. ADSCrossRefGoogle Scholar
  11. DeForest, C.E., Howard, T.A., McComas, D.J.: 2013, Tracking coronal features from the low corona to Earth: A quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys. J. 769, 43.  DOI. ADSCrossRefGoogle Scholar
  12. Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (Dst=−100 nT) during solar cycle 23 (1996 – 2006). J. Geophys. Res. 113, A05221.  DOI. ADSGoogle Scholar
  13. Farrugia, C.J., Jordanova, V.K., Thomsen, M.F., Lu, G., Cowley, S.W.H., Ogilvie, K.W.: 2006, A two-ejecta event associated with a two-step geomagnetic storm. J. Geophys. Res. 111, A11104.  DOI. ADSCrossRefGoogle Scholar
  14. Gonzalez, W.D., Gonzalez, A.L.C., Tsurutani, B.T., Smith, E.J., Tang, F.: 1989, Solar wind-magnetosphere coupling during intense magnetic storms (1978 – 1979). J. Geophys. Res. 94, 8835.  DOI. ADSCrossRefGoogle Scholar
  15. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771.  DOI. ADSCrossRefGoogle Scholar
  16. Gonzalez-Esparza, A., Santillán, A., Ferrer, J.: 2004, A numerical study of the interaction between two ejecta in the interplanetary medium: One- and two-dimensional hydrodynamic simulations. Ann. Geophys. 22, 3741.  DOI. ADSCrossRefGoogle Scholar
  17. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145.  DOI. ADSCrossRefGoogle Scholar
  18. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91.  DOI. ADSCrossRefGoogle Scholar
  19. Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937.  DOI. ADSCrossRefGoogle Scholar
  20. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901.  DOI. ADSCrossRefGoogle Scholar
  21. Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831.  DOI. ADSCrossRefGoogle Scholar
  22. Harrison, R.A., Davies, J.A., Möstl, C., Liu, Y., Temmer, M., Bisi, M.M., Eastwood, J.P., de Koning, C.A., Nitta, N., Rollett, T., Farrugia, C.J., Forsyth, R.J., Jackson, B.V., Jensen, E.A., Kilpua, E.K.J., Odstrcil, D., Webb, D.F.: 2012, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J. 750, 45.  DOI. ADSCrossRefGoogle Scholar
  23. Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev. 147, 31.  DOI. ADSCrossRefGoogle Scholar
  24. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67.  DOI. ADSCrossRefGoogle Scholar
  25. Inhester, B.: 2006, Stereoscopy basics for the STEREO mission. arXiv.
  26. Iyemori, T., Rao, D.R.K.: 1996, Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm–substorm relation. Ann. Geophys. 14, 608.  DOI. ADSCrossRefGoogle Scholar
  27. Janzhura, A., Troshichev, O., Stauning, P.: 2007, Unified PC indices: relation to isolated magnetic substorms. J. Geophys. Res. 112, A09207.  DOI. ADSGoogle Scholar
  28. Jurac, S., Kasper, J.C., Richardson, J.D., Lazarus, A.J.: 2002, Geomagnetic disturbances and their relationship to interplanetary shock parameters. Geophys. Res. Lett. 29, 1463.  DOI. ADSGoogle Scholar
  29. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5.  DOI. ADSCrossRefGoogle Scholar
  30. Kilpua, E.K.J., Mierla, M., Rodriguez, L., Zhukov, A.N., Srivastava, N., West, M.J.: 2012, Estimating travel times of coronal mass ejections to 1 AU using multi-spacecraft coronagraph data. Solar Phys. 279, 477.  DOI. ADSCrossRefGoogle Scholar
  31. Laundal, K.M., Østgaard, N.: 2009, Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres. Nature 460, 491.  DOI. ADSCrossRefGoogle Scholar
  32. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The Wind magnetic field investigation. Space Sci. Rev. 71, 207.  DOI. ADSCrossRefGoogle Scholar
  33. Lindsay, G.M., Luhmann, J.G., Russell, C.T., Gosling, J.T.: 1999, Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res. 104, 12515.  DOI. ADSCrossRefGoogle Scholar
  34. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010a, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82.  DOI. ADSCrossRefGoogle Scholar
  35. Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010b, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762.  DOI. ADSCrossRefGoogle Scholar
  36. Liu, Y.D., Luhmann, J.G., Möstl, C., Martinez-Oliveros, J.C., Bale, S.D., Lin, R.P., Harrison, R.A., Temmer, M., Webb, D.F., Odstrcil, D.: 2012, Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett. 746, L15.  DOI. ADSCrossRefGoogle Scholar
  37. Lugaz, N., Manchester, W.B. IV, Gombosi, T.I.: 2005, Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys. J. 634, 651.  DOI. ADSCrossRefGoogle Scholar
  38. Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – Application to CME–CME interaction. Ann. Geophys. 27, 3479.  DOI. ADSCrossRefGoogle Scholar
  39. Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493.  DOI. ADSCrossRefGoogle Scholar
  40. Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23 – 24 as revealed by combined in situ measurements and heliospheric imaging. Astrophys. J. 759, 68.  DOI. ADSCrossRefGoogle Scholar
  41. Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: A study using white-light and scintillation images. Solar Phys. 235, 345.  DOI. ADSCrossRefGoogle Scholar
  42. Maričić, D., Vršnak, B., Dumbović, M., Žic, T., Roša, D., Hržina, D., Lulić, S., Romštajn, I., Bušić, I., Salamon, K., Temmer, M., Rollett, T., Veronig, A., Bostanjyan, N., Chilingarian, A., Mailyan, B., Arakelyan, K., Hovhannisyan, A., Mujić, N.: 2014, Kinematics of interacting ICMEs and related forbush decrease: case study. Solar Phys. 289, 351.  DOI. ADSCrossRefGoogle Scholar
  43. Martínez Oliveros, J.C., Raftery, C.L., Bain, H.M., Liu, Y., Krupar, V., Bale, S., Krucker, S.: 2012, The 2010 August 1 type II burst: A CME–CME interaction and its radio and white-light manifestations. Astrophys. J. 748, 66.  DOI. ADSCrossRefGoogle Scholar
  44. Mays, M.L., Horton, W., Kozyra, J., Zurbuchen, T.H., Huang, C., Spencer, E.: 2007, Effect of interplanetary shocks on the AL and Dst indices. Geophys. Res. Lett. 34, L11104.  DOI. ADSCrossRefGoogle Scholar
  45. Mierla, M., Davila, J., Thompson, W., Inhester, B., Srivastava, N., Kramar, M., St. Cyr, O.C., Stenborg, G., Howard, R.A.: 2008, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Solar Phys. 252, 385.  DOI. ADSCrossRefGoogle Scholar
  46. Minnaert, M.: 1930, On the continuous spectrum of the corona and its polarisation. Z. Astrophys. 1, 209. ADSzbMATHGoogle Scholar
  47. Mishra, W., Srivastava, N.: 2013, Estimating the arrival time of Earth-directed coronal mass ejections at in situ spacecraft using COR and HI observations from STEREO. Astrophys. J. 772, 70.  DOI. ADSCrossRefGoogle Scholar
  48. Mishra, W., Srivastava, N.: 2014, Morphological and kinematic evolution of three interacting coronal mass ejections of 2011 February 13 – 15. Astrophys. J. 794, 64.  DOI. ADS. arXiv. ADSCrossRefGoogle Scholar
  49. Mishra, W., Srivastava, N., Davies, J.A.: 2014, A comparison of reconstruction methods for the estimation of coronal mass ejections kinematics based on SECCHI/HI observations. Astrophys. J. 784, 135.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 37, 24103.  DOI. ADSCrossRefGoogle Scholar
  51. Möstl, C., Rollett, T., Lugaz, N., Farrugia, C.J., Davies, J.A., Temmer, M., Veronig, A.M., Harrison, R.A., Crothers, S., Luhmann, J.G., Galvin, A.B., Zhang, T.L., Baumjohann, W., Biernat, H.K.: 2011, Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys. J. 741, 34.  DOI. ADSCrossRefGoogle Scholar
  52. Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10.  DOI. ADSCrossRefGoogle Scholar
  53. Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201.  DOI. ADSCrossRefGoogle Scholar
  54. Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. 110, A02106.  DOI. ADSGoogle Scholar
  55. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55.  DOI. ADSCrossRefGoogle Scholar
  56. Poland, A.I., Howard, R.A., Koomen, M.J., Michels, D.J., Sheeley, N.R. Jr.: 1981, Coronal transients near sunspot maximum. Solar Phys. 69, 169.  DOI. ADSCrossRefGoogle Scholar
  57. Richardson, I.G., Cane, H.V.: 2011, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather 9, 7005.  DOI. ADSCrossRefGoogle Scholar
  58. Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys. 276, 293.  DOI. ADSCrossRefGoogle Scholar
  59. Rollett, T., Temmer, M., Möstl, C., Lugaz, N., Veronig, A.M., Möstl, U.V.: 2013, Assessing the constrained harmonic mean method for deriving the kinematics of ICMEs with a numerical simulation. Solar Phys. 283, 541.  DOI. ADSCrossRefGoogle Scholar
  60. Sheeley, N.R., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739.  DOI. ADSCrossRefGoogle Scholar
  61. Shen, C., Wang, Y., Wang, S., Liu, Y., Liu, R., Vourlidas, A., Miao, B., Ye, P., Liu, J., Zhou, Z.: 2012, Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nature 8, 923.  DOI. Google Scholar
  62. Srivastava, N., Inhester, B., Mierla, M., Podlipnik, B.: 2009, 3D reconstruction of the leading edge of the 20 May 2007 partial halo CME. Solar Phys. 259, 213.  DOI. ADSCrossRefGoogle Scholar
  63. Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95.  DOI. ADSCrossRefGoogle Scholar
  64. Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101.  DOI. ADSCrossRefGoogle Scholar
  65. Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J. 749, 57.  DOI. ADSCrossRefGoogle Scholar
  66. Temmer, M., Veronig, A.M., Peinhart, V., Vršnak, B.: 2014, Asymmetry in the CME–CME interaction process for the events from 2011 February 14 – 15. Astrophys. J. 785, 85.  DOI. ADSCrossRefGoogle Scholar
  67. Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. 194, 33.  DOI. ADSCrossRefGoogle Scholar
  68. Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111.  DOI. ADSCrossRefGoogle Scholar
  69. Thompson, W.T.: 2009, 3D triangulation of a Sun-grazing comet. Icarus 200, 351.  DOI. ADSCrossRefGoogle Scholar
  70. Troshichev, O.A., Lukianova, R.Y., Papitashvili, V.O., Rich, F.J., Rasmussen, O.: 2000, Polar cap index (PC) as a proxy for ionospheric electric field in the near-pole region. Geophys. Res. Lett. 27, 3809.  DOI. ADSCrossRefGoogle Scholar
  71. Tsurutani, B.T., Smith, E.J., Gonzalez, W.D., Tang, F., Akasofu, S.I.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93, 8519.  DOI. ADSCrossRefGoogle Scholar
  72. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01.  DOI. ADSGoogle Scholar
  73. Vandas, M., Odstrcil, D.: 2004, Acceleration of electrons by interacting CMEs. Astron. Astrophys. 415, 755.  DOI. ADSCrossRefGoogle Scholar
  74. Vandas, M., Fischer, S., Dryer, M., Smith, Z., Detman, T., Geranios, A.: 1997, MHD simulation of an interaction of a shock wave with a magnetic cloud. J. Geophys. Res. 102, 22295.  DOI. ADSCrossRefGoogle Scholar
  75. Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456.  DOI. ADSCrossRefGoogle Scholar
  76. Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43.  DOI. ADSCrossRefGoogle Scholar
  77. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295.  DOI. ADSCrossRefGoogle Scholar
  78. Wang, Y.M., Ye, P.Z., Wang, S.: 2003, Multiple magnetic clouds: Several examples during March–April 2001. J. Geophys. Res. 108, 1370.  DOI. CrossRefGoogle Scholar
  79. Wang, Y.M., Ye, P.Z., Wang, S., Xue, X.H.: 2003, An interplanetary cause of large geomagnetic storms: Fast forward shock overtaking preceding magnetic cloud. Geophys. Res. Lett. 30, 1700.  DOI. ADSCrossRefGoogle Scholar
  80. Wang, Y., Zheng, H., Wang, S., Ye, P.: 2005, MHD simulation of the formation and propagation of multiple magnetic clouds in the heliosphere. Astron. Astrophys. 434, 309.  DOI. ADSCrossRefGoogle Scholar
  81. Webb, D.F., Möstl, C., Jackson, B.V., Bisi, M.M., Howard, T.A., Mulligan, T., Jensen, E.A., Jian, L.K., Davies, J.A., de Koning, C.A., Liu, Y., Temmer, M., Clover, J.M., Farrugia, C.J., Harrison, R.A., Nitta, N., Odstrcil, D., Tappin, S.J., Yu, H.-S.: 2013, Heliospheric imaging of 3D density structures during the multiple coronal mass ejections of late July to early August 2010. Solar Phys. 285, 317.  DOI. ADSCrossRefGoogle Scholar
  82. Xiong, M., Zheng, H., Wang, S.: 2009, Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision. J. Geophys. Res. 114, A11101.  DOI. ADSCrossRefGoogle Scholar
  83. Xiong, M., Zheng, H., Wang, Y., Wang, S.: 2006, Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness: 2. Oblique collision. J. Geophys. Res. 111, A11102.  DOI. ADSCrossRefGoogle Scholar
  84. Xiong, M., Zheng, H., Wu, S.T., Wang, Y., Wang, S.: 2007, Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness. J. Geophys. Res. 112, A11103.  DOI. ADSCrossRefGoogle Scholar
  85. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Wageesh Mishra
    • 1
    Email author
  • Nandita Srivastava
    • 1
  • D. Chakrabarty
    • 2
  1. 1.Udaipur Solar ObservatoryPhysical Research LaboratoryUdaipurIndia
  2. 2.Space and Atmospheric Sciences DivisionPhysical Research LaboratoryAhmedabadIndia

Personalised recommendations