Advertisement

Solar Physics

, Volume 290, Issue 2, pp 635–643 | Cite as

Cosmic Ray 11-Year Modulation for Sunspot Cycle 24

  • H. S. AhluwaliaEmail author
  • R. C. Ygbuhay
Article

Abstract

Galactic cosmic-ray (GCR) modulation at 1 AU for sunspot (SSN) Cycle 24 is studied using data from a global network of detectors and balloon measurements of low-energy ions at high latitudes in Russia. The observed modulation is modest compared with previous cycles. The tilt angle of the heliospheric current sheet reached a maximum value for Cycle 24 even though the peak of the interplanetary magnetic-field intensity at 1 AU has a much lower value (≈ 5 nT). The solar polar field in the northern hemisphere reversed in June 2012 and again in March 2014 while that in the southern hemisphere reversed in July 2013. The double field reversal in northern hemisphere after SSN maximum is not expected from dynamo theory. GCR modulation is at maximum phase in 2013. We have also studied the anomalous GCR recovery in 2009 using data from a low-energy proton channel on Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA). The rigidity dependence of the Cycle 24 modulation is computed using data from neutron monitors, directional muon telescopes at Nagoya, Japan, and detectors on balloons at high latitudes in Russia. It is a power law with an exponent −1.29, similar to previous solar cycles (−1.2±0.1); the nearly linear dependence of the modulation on the rigidity over a wide range poses a challenge to the quasi-linear theory (QLT) of GCR modulation.

Keywords

Sunspots Cycle 24 Galactic cosmic rays Modulation 

Notes

Acknowledgements

We thank the providers of the solar, interplanetary, and cosmic-ray data used in this study and the referee for diligence. The US National Science Foundation supports the global network of neutron monitors (MM, NE) operated by the Bartol Institute under grants ANT-0739620 and ANT-0838839. Galina Bazilevskaya supplied the balloon measurements of low-energy GCR ions at polar latitudes in Russia and the PAMELA satellite data.

References

  1. Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., et al.: 2013, Time dependence of the proton flux measured by PAMELA during the July 2006 – December 2009 solar minimum. Astrophys. J. 765, 91.ADSCrossRefGoogle Scholar
  2. Ahluwalia, H.S.: 1980, Solar polar field reversals and secular variation of cosmic ray intensity. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics, Reidel, Boston, 79.CrossRefGoogle Scholar
  3. Ahluwalia, H.S.: 1992, A correlation between IMF and the limiting primary rigidity for the cosmic ray diurnal anisotropy. Geophys. Res. Lett. 19, 633.  DOI.ADSCrossRefGoogle Scholar
  4. Ahluwalia, H.S.: 1994, Repetitive patterns in the recovery phase of cosmic ray 11-year modulation. J. Geophys. Res. 99, 11561.ADSCrossRefGoogle Scholar
  5. Ahluwalia, H.S.: 2000, On galactic cosmic ray flux decrease near solar minima and IMF intensity. Geophys. Res. Lett. 27, 1603.ADSCrossRefGoogle Scholar
  6. Ahluwalia, H.S.: 2002, IMF intensity and galactic cosmic ray modulation. Adv. Space Res. 29, 439.ADSCrossRefGoogle Scholar
  7. Ahluwalia, H.S.: 2013, Sunspot numbers, interplanetary magnetic field, and cosmic ray intensity at Earth: nexus for the twentieth century. Adv. Space Res. 52, 2112.ADSCrossRefGoogle Scholar
  8. Ahluwalia, H.S.: 2014, Sunspot activity and cosmic ray modulation at 1 A.U. for 1900 – 2013. Adv. Space Res. 54, 1704.  DOI.ADSCrossRefGoogle Scholar
  9. Ahluwalia, H.S., Dessler, A.J.: 1962, Diurnal variation of cosmic radiation intensity produced by a solar wind. Planet. Space Sci. 9, 195.  DOI.ADSCrossRefGoogle Scholar
  10. Ahluwalia, H.S., Fikani, M.M.: 2007, Cosmic ray detector response to transient solar modulation: Forbush decreases. J. Geophys. Res. 112, A08105.  DOI.ADSGoogle Scholar
  11. Ahluwalia, H.S., Fikani, M.M., Ygbuhay, R.C.: 2010, Rigidity dependence of 11-year cosmic ray modulation: implication for theories. J. Geophys. Res. 115.  DOI.
  12. Ahluwalia, H.S., Lopate, C.: 2008, Mean energy of response to galactic cosmic ray spectrum: IMP 8 and Climax neutron monitor. Adv. Space Res. 42, 934.  DOI.CrossRefGoogle Scholar
  13. Ahluwalia, H.S., Riker, J.F.: 1987, The diurnal anisotropy of cosmic rays and the heliospheric transport parameters. Planet. Space Sci. 35, 45.ADSCrossRefGoogle Scholar
  14. Ahluwalia, H.S., Ygbuhay, R.C.: 2010, Status of galactic cosmic ray recovery from sunspot cycle 23 modulation. In: Maksimovic, M., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) 12th Int. Solar Wind Conf. CP-1216, AIP, Melville, 699.Google Scholar
  15. Ahluwalia, H.S., Ygbuhay, R.C.: 2011, The onset of sunspot cycle 24 and galactic cosmic ray modulation. Adv. Space Res. 48, 61.  DOI.ADSCrossRefGoogle Scholar
  16. Ahluwalia, H.S., Ygbuhay, R.C.: 2013, The descent of the solar cycle 24 cosmic ray modulation. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) 13th Int. Solar Wind Conf. CP-1539, AIP, Melville, 331.Google Scholar
  17. Ahluwalia, H.S., Lopate, C., Ygbuhay, R.C., Duldig, M.L.: 2010, Galactic cosmic ray modulation for sunspot cycle 23. Adv. Space Res. 46, 934.  DOI.ADSCrossRefGoogle Scholar
  18. Ahluwalia, H.S., Alania, M.V., Wawrzynczak, A., Ygbuhay, R.C., Fikani, M.M.: 2014, May 2005 halo CMEs and galactic cosmic ray flux changes at Earth orbit. Solar Phys. 289, 1763.ADSCrossRefGoogle Scholar
  19. Altrock, R.C.: 2014, Forecasting the maxima of solar cycle 24 with coronal Fe xiv emission. Solar Phys. 289, 623.ADSCrossRefGoogle Scholar
  20. Babcock, H.D.: 1959, The Sun’s polar magnetic field. Astrophys. J. 130, 364.ADSCrossRefGoogle Scholar
  21. Bazilevskaya, G.A., Krainev, M.B., Stozhkov, Y.I., Svirzhevskaya, A.K., Svirzhevsky, N.S.: 1991, Long-term Soviet program for the measurement of ionizing radiation in the atmosphere. J. Geomagn. Geoelectr. 43, suppl. 2, 893.  DOI.CrossRefGoogle Scholar
  22. Bazilevskaya, G.A., Krainev, M.B., Makhmutov, V.S., Stozhkov Yu, I., Svirzhevskaya Svirzhevsky, N.S.: 2012, Change in the rigidity dependence of the galactic cosmic ray modulation in 2008 – 2009. Adv. Space Res. 49, 784.ADSCrossRefGoogle Scholar
  23. Burlaga, L.F., McDonald, F.B., Goldstein, M.L., Lazarus, A.J.: 1985, Cosmic ray modulation and turbulent interaction regions near 11 AU. J. Geophys. Res. 90, 12027.ADSCrossRefGoogle Scholar
  24. Cane, H.V., Wibberenz, G., Richardson, I.G., von Rosenvinge, T.T.: 1999, Cosmic ray modulation and the solar magnetic field. Geophys. Res. Lett. 26, 565.ADSCrossRefGoogle Scholar
  25. Dikpati, M., de Toma, G., Gilman, P.A., Arge, C.N., White, O.R.: 2004, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136.ADSCrossRefGoogle Scholar
  26. Engelbrecht, N.E., Burger, R.A.: 2013a, An ab initio model for cosmic-ray modulation. Astrophys. J. 772, 46 (12 pp.).ADSCrossRefGoogle Scholar
  27. Engelbrecht, N.E., Burger, R.A.: 2013b, An ab initio model for the modulation of galactic cosmic-ray electrons. Astrophys. J. 779, 158.ADSCrossRefGoogle Scholar
  28. Forbush, S.E.: 1954, Worldwide cosmic ray variations: 1937 – 1952. J. Geophys. Res. 59, 525.ADSCrossRefGoogle Scholar
  29. Jokipii, J.R.: 1971, Propagation of cosmic rays in the solar wind. Rev. Geophys. 9, 27.ADSCrossRefGoogle Scholar
  30. Kota, J.: 2013, Theory and modeling of galactic cosmic rays: trends and prospects. Space Sci. Rev. 176(1 – 4), 391.  DOI.ADSCrossRefGoogle Scholar
  31. Kota, J., Jokipii, J.R.: 1983, Effects of drift on the transport of cosmic rays. VI. A three dimensional model including drifts. Astrophys. J. 265, 573.  DOI.ADSCrossRefGoogle Scholar
  32. Krymsky, G.F., Krivoshapkin, P.A., Gerasimova, S.K., Golobobov, P.Yu., Grigorev, V.G., Starodubtsev, S.A.: 2012, Heliospheric modulation of cosmic rays in solar cycles 19 – 23. Astron. Lett. 38, 609.ADSCrossRefGoogle Scholar
  33. Lockwood, J.A., Webber, W.R.: 1979, Cosmic ray modulation during solar activity cycle 20. J. Geophys. Res. 84, 120.ADSCrossRefGoogle Scholar
  34. Manuel, R., Ferreira, S.E.S., Potgieter, M.S.: 2014, Time dependent modulation of cosmic rays in the heliosphere. Solar Phys. 289, 2207.  DOI.ADSCrossRefGoogle Scholar
  35. Mewaldt, R.A., Davis, A.J., Lave, K.A., Leske, R.A., Stone, E.C., Wiedenbeck, M.E., et al.: 2010, Record setting cosmic ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, L1.ADSCrossRefGoogle Scholar
  36. Moraal, H., Stoker, P.H.: 2010, Long-term neutron monitor observations and the 2009 cosmic ray maximum. J. Geophys. Res. 115, A12109.  DOI.ADSCrossRefGoogle Scholar
  37. Morrison, P.: 1956, Solar origin of cosmic ray time variations. Phys. Rev. 101, 1397.  DOI.ADSCrossRefGoogle Scholar
  38. Parker, E.N.: 1964, Theory of streaming of cosmic rays and the diurnal variation. Planet. Space Sci. 12, 735.  DOI.ADSCrossRefGoogle Scholar
  39. Potgieter, M.S.: 2013, Solar modulation of cosmic rays. Living Rev. Solar Phys. 10, 3.  DOI.ADSCrossRefGoogle Scholar
  40. Potgieter, M.S., Vos, E.E., Boezio, M., De Simone, N., Di Felice, V., Formato, V.: 2014, Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Solar Phys. 289, 391.  DOI.ADSCrossRefGoogle Scholar
  41. Shalchi, A.: 2009, Nonlinear Cosmic Ray Diffusion Theories, Astrophys. Space Sci. Lib. 362, Springer, Berlin.Google Scholar
  42. Zhao, L.L., Qin, G., Zhang, M., Heber, B.: 2014, Modulation of galactic cosmic rays during the unusual solar minimum between cycles 23 and 24. J. Geophys. Res. 119, 1493.  DOI.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Physics & Astronomy Dept.University of New MexicoAlbuquerqueUSA

Personalised recommendations