Solar Physics

, Volume 290, Issue 2, pp 553–578 | Cite as

Yearly Comparison of Magnetic Cloud Parameters, Sunspot Number, and Interplanetary Quantities for the First 18 Years of the Wind Mission

  • R. P. Lepping
  • C.-C. WuEmail author
  • D. B. Berdichevsky


In the scalar part of this study, we determine various statistical relationships between estimated magnetic cloud (MC) model fit-parameters and sunspot number (SSN) for the interval defined by the Wind mission, i.e., early 1995 until the end of 2012, all in terms of yearly averages. The MC-fitting model used is that of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 11957 – 11965, 1990). We also statistically compare the MC fit-parameters and other derived MC quantities [e.g., axial magnetic flux (ΦO) and total axial current density (J O)] with some associated ambient interplanetary quantities (including the interplanetary magnetic field (B IMF), proton number density (N P), and others). Some of the main findings are that the minimum SSN is nearly simultaneous with the minimum in the number of MCs per year (N MC), which occurs in 2008. There are various fluctuations in N MC and the MC model-fit quality (Q′) throughout the mission, but the last four years (2009 – 2012) are markedly different from the others; Q′ is low and N MC is large over these four years. N MC is especially large for 2012. The linear correlation coefficient (c.c.≈0.75) between the SSN and each of the three quantities J O, MC diameter (2R O), and B IMF, is moderately high, but none of the MC parameters track the SSN well in the sense defined in this article. However, there is good statistical tracking among the following: MC axial field, B IMF, 2R O, average MC speed (V MC), and yearly average solar wind speed (V SW) with relatively high c.c.s among most of these. From the start of the mission until late 2005, J O gradually increases, with a slight violation in 2003, but then a dramatic decrease (by more than a factor of five) occurs to an almost steady and low value of ≈ 3 μA km−2 until the end of the interval of interest, i.e., lasting for at least seven years. This tends to split the overall 18-year interval into two phases with a separator at the end of 2005. There is good tracking between 2R O and the total axial current density, as expected. The MC duration is also correlated well with these two quantities. ΦO shows marked variations throughout the mission, but has no obvious trend. N P, B IMF, V MC, Q′, and V SW are all quite steady over the full 18 years and have markedly low relative variation. Concerning vector quantities, we examine the distribution of MC type for the 18 years, where type refers to the field directional change through a given MC starting at first encounter (i.e., North-to-South, or South-to-North, All South, All North, etc.). Combining all 18 years of MC types shows that the occurrence rate varies strongly across the various MC types, with N-to-S being most prevalent, with a 27 % occurrence rate (of all MCs), and S-to-N being second, with a 23 % occurrence. Then All N and All S come next at 16 % and 10 % occurrence rate, respectively. All others are at 7 % or lower. For the variation of MC types with time, the southern types (i.e., those that start with a southern magnetic field, a negative B Z in geocentric-solar-ecliptic coordinates) decrease, as the northern types (i.e., those that start with a northern field) increase, apparently consistent with the specific timing of the polarity change of the solar magnetic field, as predicted by Bothmer and Rust (in Crooker, N., Joselyn, J., Feynman J. (eds), Geophys. Monogr., 139 –  146, 1997).


Magnetic Cloud Sun spot number Solar wind Coronal Mass Ejection Interplanetary magnetic field MC fitting model 



We thank the Wind/MFI and SWE teams for the care they employ in producing the plasma and field data used for this work, and in particular, we thank Keith Ogilvie, the principal investigator of SWE, and Adam Szabo (PI) and Franco Mariani (instrument calibrations), both of the MFI team. We are grateful to the referee for comments that significantly added to the proper interpretation of our analysis and for finding a mistake. This work was supported by a NASA program under grant number NNG10PB25P. CCW was partially supported by the ONR 6.1 program.


  1. Berdichevsky, D.B., Farrugia, C.J., Thompson, B.J., Lepping, R.P., Reames, D.V., Kaiser, M., Steinberg, J.T., Plunkett, S.P., Michels, D.J.: 2002, Ann. Geophys. 20, 891. ADSCrossRefGoogle Scholar
  2. Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Phys. Rev. E 67, 036405. ADSCrossRefGoogle Scholar
  3. Bothmer, V., Rust, D.M.: 1997, In: Crooker, N., Joselyn, J., Feynman, J. (eds.) Geophys. Monogr. Ser. 99, AGU, Washington DC, 139. Google Scholar
  4. Bothmer, V., Schwenn, R.: 1998, Ann. Geophys. 16, 1. ADSCrossRefGoogle Scholar
  5. Burlaga, L.F.: 1988, J. Geophys. Res. 93, 7217. ADSCrossRefGoogle Scholar
  6. Burlaga, L.F.: 1995, Interplanetary Magnetohydrodynamics, Oxford Univ. Press, New York, 89. Google Scholar
  7. Burlaga, L.F., Sittler, E.C., Mariani, F., Schwenn, R.: 1981, J. Geophys. Res. 86, 6673. ADSCrossRefGoogle Scholar
  8. Burlaga, L.F., Lepping, R.P., Jones, J.A.: 1990, In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Geophys. Monogr. Ser. 58, AGU, Washington DC, 373. Google Scholar
  9. Burlaga, L.F., Ness, N.F., Richardson, J.D., Lepping, R.P.: 2001, Solar Phys. 204, 399. ADSCrossRefGoogle Scholar
  10. Cane, H.V., Richardson, I.G.: 2003, J. Geophys. Res. 108, 1156, pp. SSH 6-1. CrossRefGoogle Scholar
  11. Dryer, M.: 1994, Space Sci. Rev. 67, 363. ADSCrossRefGoogle Scholar
  12. Farrugia, C.J., Burlaga, L.F., Freeman, P., Lepping, R.P., Osherovich, V.: 1992, In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven, Pergamon, New York, 611. CrossRefGoogle Scholar
  13. Farrugia, C.J., Berdichevsky, D.B., Möstl, C., Galvin, A.B., Leitner, M., Popecki, M.A., Simunac, K.D.C., Opitz, A., Lavraud, B., Ogilvie, K.W., Veronig, A.M., Temmer, M., Luhmann, J.G., Sauvaud, J.A.: 2011, J. Atmos. Solar-Terr. Phys. 73, 1254. ADSCrossRefGoogle Scholar
  14. Goldstein, H.: 1983, In: Neugebauer, M. (ed.) Solar Wind Five, NASA Conf. Publ. 2280, 731. Google Scholar
  15. Gopalswamy, N.: 2006, Space Sci. Rev. 124, 145. ADSCrossRefGoogle Scholar
  16. Gopalswamy, N., Hanaoka, Y., Kosugi, T., Lepping, R.P., Steinberg, J.T., Plunkett, S., Howard, R.A., Thompson, B.J., Gurman, J., Ho, G., Nitta, N., Hudson, H.S.: 1998, Geophys. Res. Lett. 25, 2485. ADSCrossRefGoogle Scholar
  17. Gosling, J.T.: 1997, Coronal mass ejections. In: Crooker, N., Joselyn, J., Feynman, J. (eds.) Geophys. Monogr. Ser. 99, AGU, Washington DC, 9. Google Scholar
  18. Klein, L., Burlaga, L.F.: 1982, Geophys. Res. Lett. 87, 613. CrossRefGoogle Scholar
  19. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, J. Geophys. Res. 95, 11957. ADSCrossRefGoogle Scholar
  20. Lepping, R.P., Slavin, J.A., Hesse, M., Jones, J.A., Szabo, A.: 1996, J. Geomagn. Geoelectr. 48, 589. CrossRefGoogle Scholar
  21. Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, Ann. Geophys. 24, 215. Sref-ID: 1432-0576/ag/2006-24-215. ADSCrossRefGoogle Scholar
  22. Lepping, R.P., Wu, C.-C.: 2007, J. Geophys. Res. 112, A10103. ADSCrossRefGoogle Scholar
  23. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2011, Solar Phys. 274, 345. ADSCrossRefGoogle Scholar
  24. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2005, Ann. Geophys. 23, 2687. ADSCrossRefGoogle Scholar
  25. Lepping, R.P., Berdichevsky, D., Ferguson, T.: 2003, J. Geophys. Res. 108, 1356. CrossRefGoogle Scholar
  26. Lepping, R.P., Berdichevsky, D., Ferguson, T.: 2004, J. Geophys. Res. 109, A07101. ADSGoogle Scholar
  27. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2012, American Geophysical Union, Fall Meeting 2012, abstract #SH41B-2109. Google Scholar
  28. Li, Y., Luhmann, J.G., Lynch, B.J., Kilpua, E.K.J.: 2014, J. Geophys. Res. 119, 3237. CrossRefGoogle Scholar
  29. Liu, Y., Richardson, J.D., Belcher, J.W.: 2005, Planet. Space Sci. 53, 3. ADSCrossRefGoogle Scholar
  30. Lundquist, S.: 1950, Ark. Fys. 2, 361. zbMATHMathSciNetGoogle Scholar
  31. Marubashi, K.: 1997, In: Crooker, N., Joselyn, J., Feynman, J. (eds.) Geophys. Monogr. Ser. 99, AGU, Washington DC, 147. Google Scholar
  32. Marubashi, K., Lepping, R.P.: 2007, Ann. Geophys. 25, 2453. ADSCrossRefGoogle Scholar
  33. Menzel, D.H.: 1960, Fundamental Formulas of Physics, Dover Pub. Inc., New York, 85. Google Scholar
  34. Moldwin, M.B., Ford, S., Lepping, R.P., Slavin, J.A., Szabo, A.: 2000, Geophys. Res. Lett. 27, 57. ADSCrossRefGoogle Scholar
  35. Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Geophys. Res. Lett. 25, 2959. ADSCrossRefGoogle Scholar
  36. Osherovich, V.I., Farrugia, C.J., Burlaga, L.F.: 1993, Adv. Space Res. 13(6), 57. ADSCrossRefGoogle Scholar
  37. Richardson, I.G., Cane, H.V.: 2010, Solar Phys. 264, 189. ADSCrossRefGoogle Scholar
  38. Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J., Reisenfeld, D.B., Smith, C.W., Lepping, R.P., Balogh, A.: 2000, J. Geophys. Res. 105, 27269. ADSCrossRefGoogle Scholar
  39. Vandas, M., Romashets, E.P., Watari, S.: 2005, Planet. Space Sci. 53, 19. ADSCrossRefGoogle Scholar
  40. Wu, C.-C., Lepping, R.P.: 2002, J. Geophys. Res. 107, 1314, pp. SMP 19-1. CrossRefGoogle Scholar
  41. Wu, C.-C., Lepping, R.P.: 2011, Solar Phys. 269, 141. ADSCrossRefGoogle Scholar
  42. Wu, C.-C., Lepping, R.P., Gopalswamy, N.: 2006, Solar Phys. 239, 449. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  1. 1.GSFCNASAGreenbeltUSA
  2. 2.Naval Research LaboratoryWashingtonUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of the District of ColumbiaWashingtonUSA

Personalised recommendations