Solar Physics

, Volume 290, Issue 2, pp 627–633 | Cite as

Relationship Between the Magnetic Flux of Solar Eruptions and the Ap Index of Geomagnetic Storms

  • I. M. ChertokEmail author
  • M. A. Abunina
  • A. A. Abunin
  • A. V. Belov
  • V. V. Grechnev


Solar coronal mass ejections (CMEs) are the main drivers of the most powerful non-recurrent geomagnetic storms. In the extreme-ultraviolet range, CMEs are accompanied by bright post-eruption arcades and dark dimmings. The analysis of events of Solar Cycle 23 (Chertok et al. in Solar Phys. 282, 175, 2013) revealed that the summarized unsigned magnetic flux in the arcades and dimming regions at the photospheric level, Φ, is significantly related to the intensity (Dst index) of geomagnetic storms. This provides the basis for the earliest diagnostics of geoefficiency of solar eruptions. In the present article, using the same data set, we find that a noticeable correlation also exists between the eruptive magnetic flux, Φ, and another geomagnetic index, Ap. As the magnetic flux increases from some tens to ≈ 500 (in units of 1020 Mx), the geomagnetic storm intensity measured by the three-hour Ap index increases on average from Ap ≈ 50 to a formal upper limit of 400 (in units of 2 nT). The established relationship shows that the real value of the Ap index is not limited and during the most severe magnetic storms may significantly exceed 400.


Solar eruptions Arcades Coronal dimming Coronal mass ejections Magnetic fields Geomagnetic storms 



We are grateful to an anonymous referee for constructive comments that helped us to improve the manuscript. The authors thank the SOHO EIT and MDI teams as well as the CDAW participants for data and materials used in the present study. SOHO is a project of international cooperation between ESA and NASA. This research was supported by the Russian Foundation of Basic Research under grants 12-02-00037, 14-02-00367, and the Ministry of education and science of Russian Federation under projects 8407 and 14.518.11.7047.


  1. Attrill, G., Nakwacki, M.S., Harra, L.K., van Driel-Gesztelyi, L., Mandrini, C.H., Dasso, S., Wang, J.: 2006, Solar Phys. 238, 117.  DOI. ADSCrossRefGoogle Scholar
  2. Bothmer, V., Zhukov, A.: 2007, In: Bothmer, V., Daglis, I.A. (eds.) Space Weather – Physics and Effects, 31. CrossRefGoogle Scholar
  3. Chertok, I.M., Grechnev, V.V.: 2005, Solar Phys. 229, 95.  DOI. ADSCrossRefGoogle Scholar
  4. Chertok, I.M., Grechnev, V.V.: 2006, Bull. Russ. Acad. Sci., Phys. 70, 1717. Google Scholar
  5. Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Solar Phys. 282, 175.  DOI. ADSCrossRefGoogle Scholar
  6. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, Solar Phys. 162, 291.  DOI. ADSCrossRefGoogle Scholar
  7. Domingo, V., Fleck, B., Poland, A.I.: 1995, Solar Phys. 162, 1.  DOI. ADSCrossRefGoogle Scholar
  8. Gopalswamy, N.: 2009, In: Tsuda, T., Fujii, R., Shibata, K., Geller, M.A. (eds.) Climate and Weather of the Sun–Earth Syst. (CAWSES): Selected Papers from the 2007 Kyoto Symp., 77. Google Scholar
  9. Grechnev, V.V., Uralov, A.M., Chertok, I.M., Belov, A.V., Filippov, B.P., Slemzin, V.A., Jackson, B.V.: 2014, Solar Phys., in press.  DOI.
  10. Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Astrophys. J. 793, article id. 53.  DOI.
  11. Hudson, H.S., Cliver, E.W.: 2001, J. Geophys. Res. 106, 25199.  DOI. ADSCrossRefGoogle Scholar
  12. Kahler, S.: 1977, Astrophys. J. 214, 891.  DOI. ADSCrossRefGoogle Scholar
  13. Kim, R.-S., Cho, K.-S., Moon, Y.-J., Dryer, M., Lee, J., Yi, Y., et al.: 2010, J. Geophys. Res. 115, A12108.  DOI. ADSCrossRefGoogle Scholar
  14. Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, J. Geophys. Res. 109, 5106.  DOI. CrossRefGoogle Scholar
  15. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Astron. Astrophys. 434, 725.  DOI. ADSCrossRefGoogle Scholar
  16. Panasyuk, M.I., Kuznetsov, S.N., Lazutin, L.L., Avdyushin, S.I., Alexeev, I.I., Ammosov, P.P., et al.: 2004, Cosm. Res. 42, 489.  DOI. ADSCrossRefGoogle Scholar
  17. Qiu, J., Yurchyshyn, V.B.: 2005, Astrophys. J. Lett. 634, L121.  DOI. ADSCrossRefGoogle Scholar
  18. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, Astrophys. J. 659, 758.  DOI. ADSCrossRefGoogle Scholar
  19. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, Solar Phys. 162, 129.  DOI. ADSCrossRefGoogle Scholar
  20. Siebert, M., Meyer, J.: 1996, In: Dieminger, W., Hartmann, G.K., Leitinger, R. (eds.) The Upper Atmosphere, 887. Google Scholar
  21. Sterling, A.C., Hudson, H.S., Thompson, B.J., Zarro, D.: 2000, Astrophys. J. 532, 628.  DOI. ADSCrossRefGoogle Scholar
  22. Švestka, Z.: 2001, Space Sci. Rev. 95, 135. ADSCrossRefGoogle Scholar
  23. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, Geophys. Res. Lett. 25, 2465.  DOI. ADSCrossRefGoogle Scholar
  24. Tripathi, D., Bothmer, V., Cremades, H.: 2004, Astron. Astrophys. 422, 337.  DOI. ADSCrossRefGoogle Scholar
  25. Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., et al.: 2000, J. Geophys. Res. 105, 27251.  DOI. ADSCrossRefGoogle Scholar
  26. Zabolotnaya, N.A.: 2007, Indices of Geomagnetic Activity, LKI, Moscow. (In Russian). Google Scholar
  27. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J., et al.: 2007, J. Geophys. Res. 112, A10102.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • I. M. Chertok
    • 1
    Email author
  • M. A. Abunina
    • 1
  • A. A. Abunin
    • 1
  • A. V. Belov
    • 1
  • V. V. Grechnev
    • 2
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN)TroitskRussia
  2. 2.Institute of Solar-Terrestrial Physics SB RASIrkutskRussia

Personalised recommendations