Solar Physics

, Volume 290, Issue 2, pp 399–421 | Cite as

Observational Signatures of Waves and Flows in the Solar Corona

  • I. De MoortelEmail author
  • P. Antolin
  • T. Van Doorsselaere


Propagating perturbations have been observed in extended coronal loop structures for a number of years, but the interpretation in terms of slow (propagating) magneto-acoustic waves and/or as quasi-periodic upflows remains unresolved. We used forward-modelling to construct observational signatures associated with a simple slow magneto-acoustic wave or periodic flow model. Observational signatures were computed for the 171 Å Fe ix and the 193 Å Fe xii spectral lines. Although there are many differences between the flow and wave models, we did not find any clear, robust observational characteristics that can be used in isolation (i.e. that do not rely on a comparison between the models). For the waves model, a relatively rapid change of the average line widths as a function of (shallow) line-of-sight angles was found, whereas the ratio of the line width amplitudes to the Doppler velocity amplitudes is relatively high for the flow model. The most robust observational signature found is that the ratio of the mean to the amplitudes of the Doppler velocity is always higher than one for the flow model. This ratio is substantially higher for flows than for waves, and for the flows model used in the study is exactly the same in the 171 Å Fe ix and the 193 Å Fe xii spectral lines. However, these potential observational signatures need to be treated cautiously because they are likely to be model-dependent.


Flows Magnetohydrodynamics (MHD) Sun: corona Waves 



IDM acknowledges support of a Royal Society University Research Fellowship and a KU Leuven Research Council senior research fellowship (SF/12/008).The research leading to these results has also received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) under the grant agreement SOLSPANET (project No. 269299, ). TVD has been sponsored by an Odysseus grant of the FWO Vlaanderen. The research was performed in the context of the IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven). TVD acknowledges the funding from the FP7 ERG grant with number 276808. The authors would like to thank S.W. McIntosh for helpful discussions.


  1. Antolin, P., Van Doorsselaere, T.: 2013, Line-of-sight geometrical and instrumental resolution effects on intensity perturbations by sausage modes. Astron. Astrophys. 555, A74.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arber, T.D., Longbottom, A.W., Gerrard, C.L., Milne, A.M.: 2001, A staggered grid, Lagrangian–Eulerian remap code for 3-D MHD simulations. J. Comput. Phys. 171, 151.  DOI. ADS. ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. Banerjee, D., Gupta, G.R., Teriaca, L.: 2011, Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Banerjee, D., O’Shea, E., Doyle, J.G.: 2000, Long-period oscillations in polar plumes as observed by cds on soho. Solar Phys. 196, 63.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Berghmans, D., Clette, F.: 1999, Active region EUV transient brightenings – First results by EIT of SOHO JOP80. Solar Phys. 186, 207.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Bryans, P., Young, P.R., Doschek, G.A.: 2010, Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV Imaging Spectrometer for Hinode. Solar Phys. 243, 19.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. De Moortel, I., Bradshaw, S.J.: 2008, Forward modelling of coronal intensity perturbations. Solar Phys. 252, 101.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. De Moortel, I., Hood, A.W.: 2003, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23. ADS. ADSGoogle Scholar
  13. De Moortel, I., Nakariakov, V.M.: 2012, Magnetohydrodynamic waves and coronal seismology: An overview of recent results. Phil. Trans. Roy. Soc. London A 370, 3193.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. De Moortel, I., Hood, A.W., Ireland, J., Walsh, R.W.: 2002a, Longitudinal intensity oscillations in coronal loops observed with TRACE II. Discussion of measured parameters. Solar Phys. 209, 89.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. De Moortel, I., Ireland, J., Walsh, R.W., Hood, A.W.: 2002b, Longitudinal intensity oscillations in coronal loops observed with TRACE I. Overview of measured parameters. Solar Phys. 209, 61.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. De Pontieu, B., McIntosh, S.W.: 2010, Quasi-periodic propagating signals in the solar corona: The signature of magnetoacoustic waves or high-velocity upflows? Astrophys. J. 722, 1013.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331.  DOI. ADS.
  19. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. DeForest, C.E., Gurman, J.B.: 1998, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Del Zanna, G.: 2008, Flows in active region loops observed by hinode EIS. Astron. Astrophys. 481, L49.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: 2008, Flows and nonthermal velocities in solar active regions observed with the EUV Imaging Spectrometer on Hinode: A tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A.: 2008, Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. 678, L67.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: Contribution to solar wind formation? Astrophys. J. 676, L147.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. He, J.-S., Marsch, E., Tu, C.-Y., Guo, L.-J., Tian, H.: 2010, Intermittent outflows at the edge of an active region – A possible source of the solar wind? Astron. Astrophys. 516, A14.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Marsh, M.S., Walsh, R.W.: 2009, Using HINODE/Extreme-ultraviolet Imaging Spectrometer to confirm a seismologically inferred coronal temperature. Astrophys. J. Lett. 706, L76.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Marsh, M.S., Walsh, R.W., Plunkett, S.: 2009, Three-dimensional coronal slow modes: Toward three-dimensional seismology. Astrophys. J. 697, 1674.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. McIntosh, S.W.: 2012, Recent observations of plasma and Alfvénic wave energy injection at the base of the fast solar wind. Space Sci. Rev. 172, 69.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. McIntosh, S.W., De Pontieu, B.: 2009a, High-speed transition region and coronal upflows in the quiet Sun. Astrophys. J. 707, 524.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. McIntosh, S.W., De Pontieu, B.: 2009b, Observing episodic coronal heating events rooted in chromospheric activity. Astrophys. J. 706, L80.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. McIntosh, S.W., Innes, D.E., de Pontieu, B., Leamon, R.J.: 2010, STEREO observations of quasi-periodically driven high velocity outflows in polar plumes. Astron. Astrophys. 510, L2.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. McIntosh, S.W., Tian, H., Sechler, M., De Pontieu, B.: 2012, On the Doppler velocity of emission line profiles formed in the “Coronal contraflow” that is the chromosphere-corona mass cycle. Astrophys. J. 749, 60.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Nishizuka, N., Hara, H.: 2011, Spectroscopic observations of continuous outflows and propagating waves from NOAA 10942 with Extreme ultraviolet Imaging Spectrometer/Hinode. Astrophys. J. Lett. 737, L43.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Ofman, L., Nakariakov, V.M., Sehgal, N.: 2000, Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Ofman, L., Wang, T.J., Davila, J.M.: 2012, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Ofman, L., Romoli, M., Poletto, G., Noci, G., Kohl, J.L.: 1997, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. 491, L111.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Owen, N.R., De Moortel, I., Hood, A.W.: 2009, Forward modelling to determine the observational signatures of propagating slow waves for TRACE, SoHO/CDS, and Hinode/EIS. Astron. Astrophys. 494, 339.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Peter, H.: 2010, Asymmetries of solar coronal extreme ultraviolet emission lines. Astron. Astrophys. 521, A51.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318.  DOI. ADS.
  41. Schrijver, C.J., Title, A.M., Berger, T.E., Fletcher, L., Hurlburt, N.E., Nightingale, R.W., Shine, R.A., Tarbell, T.D., Wolfson, J., Golub, L., Bookbinder, J.A., Deluca, E.E., McMullen, R.A., Warren, H.P., Kankelborg, C.C., Handy, B.N., de Pontieu, B.: 1999, A new view of the solar outer atmosphere by the transition region and coronal explorer. Solar Phys. 187, 261.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Tian, H., McIntosh, S.W., De Pontieu, B.: 2011, The spectroscopic signature of quasi-periodic upflows in active region timeseries. Astrophys. J. 727, L37.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Ugarte-Urra, I., Warren, H.P.: 2011, Temporal variability of active region outflows. Astrophys. J. 730, 37.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., Nakariakov, V.M.: 2011, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations. Astrophys. J. Lett. 727, L32.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Verwichte, E., Marsh, M., Foullon, C., Van Doorsselaere, T., De Moortel, I., Hood, A.W., Nakariakov, V.M.: 2010, Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves. Astrophys. J. Lett. 724, L194.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Wang, T., Ofman, L., Davila, J.M.: 2012, Spectroscopic diagnosis of propagating disturbances in coronal loops: Waves or flows? In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting, ASP Conf. Ser. 456, 91. ADS. Google Scholar
  47. Wang, T., Ofman, L., Davila, J.M.: 2013, Three-dimensional magnetohydrodynamic modeling of propagating disturbances in fan-like coronal loops. Astrophys. J. Lett. 775, L23.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Wang, T.J., Ofman, L., Davila, J.M., Mariska, J.T.: 2009, Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astron. Astrophys. 503, L25.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Warren, H.P., Ugarte-Urra, I., Young, P.R., Stenborg, G.: 2011, The temperature dependence of solar active region outflows. Astrophys. J. 727, 58.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Winebarger, A.R., Warren, H., van Ballegooijen, A., DeLuca, E.E., Golub, L.: 2002, Steady flows detected in extreme-ultraviolet loops. Astrophys. J. 567, L89.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • I. De Moortel
    • 1
    Email author
  • P. Antolin
    • 2
  • T. Van Doorsselaere
    • 3
  1. 1.School of Mathematics and StatisticsUniversity of St. AndrewsSt. AndrewsUK
  2. 2.National Astronomical Observatory of JapanMitakaJapan
  3. 3.Centre for Mathematical Plasma Astrophysics, Mathematics DepartmentKU LeuvenLeuvenBelgium

Personalised recommendations