Solar Physics

, Volume 290, Issue 2, pp 507–525 | Cite as

The Signature of Flare Activity in Multifractal Measurements of Active Regions Observed by SDO/HMI

  • F. GiorgiEmail author
  • I. Ermolli
  • P. Romano
  • M. Stangalini
  • F. Zuccarello
  • S. Criscuoli


Recent studies indicate that measurements of fractal and multifractal parameters of active regions (ARs) are inefficient tools for distinguishing ARs on the basis of the flare activity or to predict flare events. In an attempt to validate this result on a large observation data set of higher spatial and temporal resolution and higher flux sensitivity than employed in previous studies, we analyzed high-cadence time series of line-of-sight magnetograms of 43 ARs characterized by different flare activity, which were observed with SDO/HMI from May 2010 to December 2013. On these data, we estimated four parameters, the generalized fractal dimensions D 0 and D 8, and the multifractal parameters C div and D div. We found distinct average values of the parameters measured on ARs that have hosted flares of different class. However, the dispersion of values measured on ARs that have produced the same class of events is such that the parameters deduced from distinct classes of flaring regions can also largely overlap. Based on the results of our measurements, C- and M-class flaring ARs are practically indistinguishable, and the same is true for M- and X-class flaring ARs. We only found consistent changes on the time series of the measured parameters on ≈ 50 % of the ARs and ≈ 50 % of the M- and X-class events. We show that these results hold for fractal and multifractal parameter estimates based on total unsigned and signed flux data of the ARs.


Flares, forecasting Flares, relation to magnetic field Magnetic fields, photosphere 



The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreements eHEROES (project no. 284461, ) and SOLARNET (no. 312495, ). This work was also supported by the Istituto Nazionale di Astrofisica (PRIN-INAF-2010). The authors acknowledge useful discussions from Giuseppe Consolini and Gherardo Valori.


  1. Abramenko, V.I.: 2005, Multifractal analysis of solar magnetograms. Solar Phys. 228, 29.  DOI. ADSCrossRefGoogle Scholar
  2. Barnes, G., Leka, K.D.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107.  DOI. ADSCrossRefGoogle Scholar
  3. Burtseva, O., Petrie, G.: 2013, Magnetic flux changes and cancellation associated with X-class and M-class flares. Solar Phys. 283, 429.  DOI. ADSCrossRefGoogle Scholar
  4. Cliver, E.W., Petrie, G.J.D., Ling, A.G.: 2012, Abrupt changes of the photospheric magnetic field in active regions and the impulsive phase of solar flares. Astrophys. J. 756, 144.  DOI. ADSCrossRefGoogle Scholar
  5. Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297.  DOI. ADSCrossRefGoogle Scholar
  6. Criscuoli, S., Rast, M.P., Ermolli, I., Centrone, M.: 2007, On the reliability of the fractal dimension measure of solar magnetic features and on its variation with solar activity. Astron. Astrophys. 461, 331.  DOI. ADSCrossRefzbMATHGoogle Scholar
  7. Criscuoli, S., Romano, P., Giorgi, F., Zuccarello, F.: 2009, Magnetic evolution of superactive regions. Complexity and potentially unstable magnetic discontinuities. Astron. Astrophys. 506, 1429.  DOI. ADSCrossRefGoogle Scholar
  8. Ermolli, I., Giorgi, F., Romano, P., Zuccarello, F., Criscuoli, S., Stangalini, M.: 2014, Fractal and multifractal properties of active regions as flare precursors: A case study based on SOHO/MDI and SDO/HMI observations. Solar Phys. 289, 2525.  DOI. ADSCrossRefGoogle Scholar
  9. Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6(4).  DOI.
  10. Georgoulis, M.K.: 2005, Turbulence in the solar atmosphere: Manifestations and diagnostics via solar image processing. Solar Phys. 228, 5.  DOI. ADSCrossRefGoogle Scholar
  11. Georgoulis, M.K.: 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161.  DOI. ADSCrossRefGoogle Scholar
  12. Georgoulis, M.K.: 2013, Toward an efficient prediction of solar flares: Which parameters, and how? Entropy 15, 5022.  DOI. ADSCrossRefGoogle Scholar
  13. Giannattasio, F., Stangalini, M., Del Moro, D., Berrilli, F.: 2013, On the asymmetry of velocity oscillation amplitude in bipolar active regions. Astron. Astrophys. 550, A47.  DOI. ADSCrossRefGoogle Scholar
  14. Hapgood, M.: 2012, Astrophysics: Prepare for the coming space weather storm. Nature 484, 311.  DOI. ADSGoogle Scholar
  15. Leka, K.D., Barnes, G.: 2013, Solar flare forecasting: A ”state of the field” report for researchers. Bull. Am. Astron. Soc. 45, 100.82. Google Scholar
  16. Li, Y., Luhmann, J., Fisher, G., Welsch, B.: 2004, Observational evidence for velocity convergence toward magnetic neutral lines as a factor in CME initiation. J. Atmos. Solar-Terr. Phys. 66, 1271.  DOI. ADSCrossRefGoogle Scholar
  17. McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: A large-scale fractal dimension survey. Astrophys. J. 631, 628.  DOI. ADSCrossRefGoogle Scholar
  18. Romano, P., Zuccarello, F.: 2011, Flare occurrence and the spatial distribution of the magnetic helicity flux. Astron. Astrophys. 535, A1.  DOI. ADSCrossRefGoogle Scholar
  19. Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583.  DOI. ADSCrossRefGoogle Scholar
  20. Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6.  DOI. ADSCrossRefGoogle Scholar
  21. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys. 162, 129.  DOI. ADSCrossRefGoogle Scholar
  22. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207.  DOI. ADSCrossRefGoogle Scholar
  23. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229.  DOI. ADSCrossRefGoogle Scholar
  24. Wachter, R., Schou, J., Rabello-Soares, M.C., Miles, J.W., Duvall, T.L., Bush, R.I.: 2012, Image quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Solar Phys. 275, 261.  DOI. ADSCrossRefGoogle Scholar
  25. Yamamoto, T.T.: 2012, The area asymmetry in bipolar magnetic fields. Astron. Astrophys. 539, A13.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • F. Giorgi
    • 1
    Email author
  • I. Ermolli
    • 1
  • P. Romano
    • 2
  • M. Stangalini
    • 1
  • F. Zuccarello
    • 3
  • S. Criscuoli
    • 4
  1. 1.INAF Osservatorio Astronomico di RomaMonte Porzio CatoneItaly
  2. 2.INAFOsservatorio Astrofisico di CataniaCataniaItaly
  3. 3.Dipartimento di Fisica e Astronomia – Sezione AstrofisicaUniversità di CataniaCataniaItaly
  4. 4.National Solar Observatory Sacramento PeakSunspotUSA

Personalised recommendations