Time Evolution of Force-Free Parameter and Free Magnetic Energy in Active Region NOAA 10365

Abstract

We describe the variation of the accumulated coronal helicity derived from the magnetic helicity flux through the photosphere in active region (AR) NOAA 10365, where several large flares and coronal mass ejections (CMEs) occurred. We used SOHO/MDI full-disk line-of-sight magnetograms to measure the helicity flux, and the integral of GOES X-ray flux as a proxy of the coronal energy variations due to flares or CMEs. Using the linear force-free field model, we transformed the accumulated helicity flux into a time sequence of the force-free parameter α accounting for flares or CMEs via the proxy derived from GOES observations. This method can be used to derive the value of α at different times during the AR evolution, and is a partial alternative to the commonly used match of field lines with EUV loops. By combining the accumulated helicity obtained from the observations with the linear force-free theory, we describe the main phases of the emergence process of the AR, and relate them temporally with the occurrence of flares or CMEs. Additionally, a comparison with the loop-matching method of fixing alpha at each time independently shows that the proposed method may be helpful in avoiding unrealistic or undetermined values of alpha that may originate from an insufficient quality of the image used to identify coronal loops at a given time. For the relative intensity of the considered events, the linear force-free field theory implies that there is a direct correlation between the released energy on the one hand and the product of the coronal helicity with the variation of α due to the event on the other. Therefore, the higher the value of the accumulated coronal helicity, the smaller the force-free parameter variation required to produce the same decrease in the free energy during the CMEs.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Alissandrakis, C.E.: 1981, Astron. Astrophys. 100, 197.

    ADS  Google Scholar 

  2. Aulanier, G., Schmieder, B.: 2002, Astron. Astrophys. 386, 1106.

    ADS  Article  Google Scholar 

  3. Berger, M.A.: 1984, Geophys. Astrophys. Fluid Dyn. 30, 79.

    ADS  Article  Google Scholar 

  4. Berger, M.A.: 1985, Astrophys. J. Suppl. 59, 433.

    ADS  Article  Google Scholar 

  5. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, Solar Phys. 162, 357.

    ADS  Article  Google Scholar 

  6. Burnette, A.B., Canfield, R.C., Pevtsov, A.A.: 2004, Astrophys. J. 606, 565.

    ADS  Article  Google Scholar 

  7. Chae, J., Wang, H., Qiu, J., Goode, P.R., Strous, L., Yun, H.S.: 2001, Astrophys. J. 560, 476.

    ADS  Article  Google Scholar 

  8. Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Astron. Astrophys. 308, 643.

    ADS  Google Scholar 

  9. Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, Astron. Astrophys. 382, 650.

    ADS  Article  Google Scholar 

  10. DeRosa, M.L., Schrijver, C.J., Barnes, G., Leka, K.D., Lites, B.W., Aschwanden, M.J., et al.: 2009, Astrophys. J. 696, 1780.

    ADS  Article  Google Scholar 

  11. Forbes, T.G.: 1984, J. Geophys. Res. 105, 23153.

    ADS  Article  Google Scholar 

  12. Georgoulis, M.K., LaBonte, B.J.: 2007, Astrophys. J. 671, 1034.

    ADS  Article  Google Scholar 

  13. Gosain, S., Démoulin, P., López Fuentes, M.: 2014, Astrophys. J. 793, 15.

    ADS  Article  Google Scholar 

  14. Green, L.M., López Fuentes, M., Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Culhane, J.L.: 2002, Solar Phys. 208, 43.

    ADS  Article  Google Scholar 

  15. Green, L.M., Démoulin, P., Mandrini, C.H., Van Driel-Gesztelyi, L.: 2003, Solar Phys. 215, 307.

    ADS  Article  Google Scholar 

  16. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Bruner, M.E., Caravalho, R., et al.: 1999, Solar Phys. 187, 229.

    ADS  Article  Google Scholar 

  17. Howard, R.F., Harvey, J.W., Forgach, S.: 1990, Solar Phys. 130, 295.

    ADS  Article  Google Scholar 

  18. Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Astrophys. J. 577, 501.

    ADS  Article  Google Scholar 

  19. Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, J. Geophys. Res. 109, A05106.

    ADS  Google Scholar 

  20. Lim, E.K., Jeong, H., Chae, J., Moon, Y.J.: 2007, Astrophys. J. 656, 1167.

    ADS  Article  Google Scholar 

  21. Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Solar Phys. 270, 45.

    ADS  Article  Google Scholar 

  22. Malanushenko, A., Longcope, D.W., McKenzie, D.E.: 2009, Astrophys. J. 707, 1044.

    ADS  Article  Google Scholar 

  23. Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Cauzzi, G., Hofmann, A.: 1996, Solar Phys. 168, 115.

    ADS  Article  Google Scholar 

  24. Mandrini, C.H., Démoulin, P., Bagala, L.G., van Driel-Gesztelyi, L., Hénoux, J.-C., Schmieder, B., Rovira, M.G.: 1997, Solar Phys. 174, 229.

    ADS  Article  Google Scholar 

  25. Nagakawa, Y., Raadu, M.A.: 1972, Solar Phys. 25, 137.

    ADS  Google Scholar 

  26. Pariat, E., Démoulin, P., Berger, M.A.: 2005, Astron. Astrophys. 439, 1191.

    ADS  Article  Google Scholar 

  27. Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2004, Astrophys. J. 614, 1099.

    ADS  Article  Google Scholar 

  28. Petsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Astrophys. J. Lett. 440, L109.

    ADS  Article  Google Scholar 

  29. Romano, P., Contarino, L., Zuccarello, F.: 2003, Solar Phys. 214, 313.

    ADS  Article  Google Scholar 

  30. Romano, P., Pariat, E., Sicari, M., Zuccarello, F.: 2011, Astron. Astrophys. 525, 13.

    ADS  Article  Google Scholar 

  31. Sakurai, T.: 1989, Space Sci. Rev. 51, 11.

    ADS  Google Scholar 

  32. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, Solar Phys. 162, 129.

    ADS  Article  Google Scholar 

  33. Schmieder, B., Démoulin, P., Aulanier, G., Golub, L.: 1996, Astrophys. J. 467, 881.

    ADS  Article  Google Scholar 

  34. Schuck, P.W.: 2005, Astrophys. J. Lett. 632, L53.

    ADS  Article  Google Scholar 

  35. Seehafer, N.: 1978, Solar Phys. 58, 215.

    ADS  Article  Google Scholar 

  36. Török, T., Kliem, B.: 2005, Astrophys. J. Lett. 630, L97.

    ADS  Article  Google Scholar 

  37. van Ballegooijen, A.A.: 2004, Astrophys. J. 612, 519.

    ADS  Article  Google Scholar 

  38. Wiegelmann, T.G.: 2008, J. Geophys. Res. 113, A03S02.

    ADS  Google Scholar 

  39. Wiegelmann, T., Sakurai, T.: 2012, Living Rev. Solar Phys. 9(5). http://solarphysics.livingreviews.org/Articles/lrsp-2012-5/ .

Download references

Acknowledgements

The research leading to these results has received funding from the European Commissions Seventh Framework Programme under the grant agreements no. 284461 (eHEROES project), no. 312495 (SOLARNET project), and from no. 263340 (SWIFF project), and from the Leverhulme Trust, Research Project Grant no. RPG-2014-051. LvDG’s work was supported by the Hungarian Research grants OTKA K-081421 and K-109276, and the STFC Consolidated Grant ST/H00260/1. PR, IE, FG, FZ work was partially supported by the INAF grant PRIN-INAF-2010. The SOHO/LASCO CME catalogue is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. TRACE is a mission of the Stanford-Lockheed Institute for Space Research, and part of the NASA Small Explorer programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Valori.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valori, G., Romano, P., Malanushenko, A. et al. Time Evolution of Force-Free Parameter and Free Magnetic Energy in Active Region NOAA 10365. Sol Phys 290, 491–506 (2015). https://doi.org/10.1007/s11207-014-0608-5

Download citation

Keywords

  • Magnetic fields, photosphere
  • Velocity fields, photosphere