Advertisement

Solar Physics

, Volume 289, Issue 10, pp 3723–3745 | Cite as

Validation of Spherically Symmetric Inversion by Use of a Tomographically Reconstructed Three-Dimensional Electron Density of the Solar Corona

  • Tongjiang WangEmail author
  • Joseph M. Davila
Article

Abstract

Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 R as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066). We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50°. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.

Keywords

Sun: corona Methods: data analysis STEREO COR1 

Notes

Acknowledgements

The work of TW was supported by the NASA Cooperative Agreement NNG11PL10A to the Catholic University of America and NASA grant NNX12AB34G. We very much appreciate the suggestions of Maxim Kramar, which led to an improved estimate of the angular resolution of the SSPA method in Appendix. We also thank the anonymous referee for his/her valuable comments that improved the manuscript.

Supplementary material

11207_2014_556_MOESM1_ESM.pdf (833 kb)
Figure 1. Electronic Supplementary material: a version of Figure 13 with continuous color scale. The ratio of tomographic density to the SSPA average density for COR1-A and -B at 1.6, 2.0, and 2.5 R in two cases. (a) – (c): The case for the SSPA 3D coronal density obtained using synthetic pB data based on the 3D density model. (d) – (f): The case for the SSPA 3D coronal density obtained using the real pB data observed by COR1-A and -B. The color scale represents the logarithm of ratio values, with white color for ratio value of one, blue colors for ratio values in the range 0.2 – 1, and red colors for ratio values in the range 1 – 5. (PDF 833 kB)

References

  1. Airapetian, V., Ofman, L., Sittler, E.C., Kramar, M.: 2011, Astrophys. J. 728, 67.  DOI. ADSCrossRefGoogle Scholar
  2. Allen, C.W.: 2000, In: Cox, A.N. (ed.) Allen’s Astrophysical Quantities, 4th edn. Springer, Berlin. ISBN 0-387-98746-0. Google Scholar
  3. Barbey, N., Guennou, C., Auchére, F.: 2013, Solar Phys. 283, 227.  DOI. ADSCrossRefGoogle Scholar
  4. Barbey, N., Auchére, F., Rodet, T., Vial, J.-C.: 2008, Solar Phys. 248, 409.  DOI. ADSCrossRefGoogle Scholar
  5. Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York. Google Scholar
  6. Blackwell, D.E., Dewhirst, D.W., Ingham, M.F.: 1967, In: Kopal, Z. (ed.) Advances in Astron. Astrophys. 5, New York, 1. Google Scholar
  7. Blackwell, D.E., Petford, A.D.: 1966a, Mon. Not. Roy. Astron. Soc. 131, 383. ADS. ADSGoogle Scholar
  8. Blackwell, D.E., Petford, A.D.: 1966b, Mon. Not. Roy. Astron. Soc. 131, 399. ADS. ADSGoogle Scholar
  9. Butala, M.D., Frazin, R.A., Kamalabadi, F.: 2005, J. Geophys. Res. 110, A09S09.  DOI ADSGoogle Scholar
  10. Butala, M.D., Hewett, R.J., Frazin, R.A., Kamalabadi, F.: 2010, Solar Phys. 262, 495.  DOI. ADSCrossRefGoogle Scholar
  11. Caroubalos, C., Hillaris, A., Bouratzis, C., Alissandrakis, C.E., Preka-Papadema, P., Polygiannakis, J., et al.: 2004, Astron. Astrophys. 413, 1125.  DOI. ADSCrossRefGoogle Scholar
  12. Cho, K.-S., Lee, J., Moon, Y.-J., Dryer, M., Bong, S.-C., Kim, Y.-H., Park, Y.D.: 2007, Astron. Astrophys. 461, 1121.  DOI. ADSCrossRefGoogle Scholar
  13. Cranmer, S.R., Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., et al.: 1999, Astrophys. J. 511, 481.  DOI. ADSCrossRefGoogle Scholar
  14. Davila, J.M.: 1994, Astrophys. J. 423, 871.  DOI. ADSCrossRefGoogle Scholar
  15. Feng, X.S., Zhou, Y.F., Wu, S.T.: 2007, Astrophys. J. 655, 1110.  DOI. ADSCrossRefGoogle Scholar
  16. Frazin, R.A., Janzen, P.: 2002, Astrophys. J. 570, 408.  DOI. ADSCrossRefGoogle Scholar
  17. Frazin, R.A., Vásquez, A.M., Kamalabadi, F., Park, H.: 2007, Astrophys. J. 671, L201.  DOI. ADSCrossRefGoogle Scholar
  18. Frazin, R.A., Lamy, P., Llebaria, A., Vásquez, A.M.: 2010, Solar Phys. 265, 19.  DOI. ADSCrossRefGoogle Scholar
  19. Frazin, R.A., Vásquez, A.M., Thompson, W.T., Hewett, R.J., Lamy, P., Llebaria, A., Vourlidas, A., Burkepile, J.: 2012, Solar Phys. 280, 273.  DOI. ADSCrossRefGoogle Scholar
  20. Gibson, S.E., Bagenal, F.: 1995, J. Geophys. Res. 100, 19865.  DOI. ADSCrossRefGoogle Scholar
  21. Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., del Zanna, G., Bromage, B.: 1999, J. Geophys. Res. 104, 9691.  DOI. ADSCrossRefGoogle Scholar
  22. Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., Howard, R.A.: 2003, In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, International Solar Cycle Studies (ISCS) Symposium SP-535, ESA, Noordwijk, 403. Google Scholar
  23. Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I., Powell, K.G.: 2000, J. Geophys. Res. 105, 25053.  DOI. ADSCrossRefGoogle Scholar
  24. Guhathakurta, M., Fisher, R.R.: 1995, Geophys. Res. Lett. 22, 1841.  DOI. ADSCrossRefGoogle Scholar
  25. Guhathakurta, M., Holzer, T.E., MacQueen, R.M.: 1996, Astrophys. J. 458, 817.  DOI. ADSCrossRefGoogle Scholar
  26. Hayashi, K.: 2005, Astrophys. J. Suppl. Ser. 161, 480.  DOI. ADSCrossRefGoogle Scholar
  27. Hayes, A.P., Vourlidas, A., Howard, R.A.: 2001, Astrophys. J. 548, 1081.  DOI. ADSCrossRefGoogle Scholar
  28. Hu, Y.Q., Feng, X.S., Wu, S.T., Song, W.B.: 2008, J. Geophys. Res. 113, 3106.  DOI. CrossRefGoogle Scholar
  29. Kimura, H., Mann, I.: 1998, Earth Planets Space 50, 493. ADS. ADSGoogle Scholar
  30. Koutchmy, S.: 1994, Adv. Space Res. 14, 29.  DOI. ADSCrossRefGoogle Scholar
  31. Koutchmy, S., Lamy, P.L.: 1985, In: Giese, R.H., Lamy, P.L. (eds.) Properties and Interactions of Interplanetary Dust, ASSL 119, 63. CrossRefGoogle Scholar
  32. Kramar, M., Jones, S., Davila, J.M., Inhester, B., Mierla, M.: 2009, Solar Phys. 259, 109.  DOI. ADSCrossRefGoogle Scholar
  33. Kramar, M., Davila, J., Xie, H., Antiochos, S.: 2011, Ann. Geophys. 29, 1019.  DOI. ADSCrossRefGoogle Scholar
  34. Kramar, M., Inhester, B., Lin, H., Davila, J.: 2013, Astrophys. J. 775, 25.  DOI. ADSCrossRefGoogle Scholar
  35. Kramar, M., Airapetian, V., Mikić, Z., Davila, J.: 2014, Solar Phys. 289, 2927.  DOI. ADSCrossRefGoogle Scholar
  36. Kwon, R.-Y., Kramar, M., Wang, T.J., Ofman, L., Davila, J.M., Chae, J.: 2013, Astrophys. J. 776, 55.  DOI. ADSCrossRefGoogle Scholar
  37. Lallement, R., Quémerais, E., Lamy, P., Bertaux, J.-L., Ferron, S., Schmidt, W.: 2010, In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum. ASP Conf. 428, 253. Google Scholar
  38. Lee, K.-S., Moon, Y.-J., Kim, K.-S., Lee, J.-Y., Cho, K.-S., Choe, G.S.: 2008, Astron. Astrophys. 486, 1009.  DOI. ADSCrossRefGoogle Scholar
  39. Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., et al.: 1999, J. Geophys. Res. 104, 9809.  DOI. ADSCrossRefGoogle Scholar
  40. Lionello, R., Linker, J.A., Mikić, Z.: 2009, Astrophys. J. 690, 902.  DOI. ADSCrossRefGoogle Scholar
  41. Manchester, W.B., Gombosi, T.I., Roussev, I., de Zeeuw, D.L., Sokolov, I.V., Powell, K.G., Tóth, G.: 2004, J. Geophys. Res. 109, A02107.  DOI. ADSGoogle Scholar
  42. Manchester, W.B., Gombosi, T.I., De Zeeuw, D.L., Sokolov, I.V., Roussev, I.I., Powell, K.G., et al.: 2005, Astrophys. J. 622, 1225.  DOI. ADSCrossRefGoogle Scholar
  43. Mann, I.: 1992, Astron. Astrophys. 261, 329. ADS. ADSGoogle Scholar
  44. Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Phys. Plasmas 6, 2217.  DOI. ADSCrossRefGoogle Scholar
  45. Minnaert, M.: 1930, Z. Astrophys. 1, 209. ADS. ADSzbMATHGoogle Scholar
  46. Munro, R.H., Jackson, B.V.: 1977, Astrophys. J. 213, 874.  DOI. ADSCrossRefGoogle Scholar
  47. November, L.J., Koutchmy, S.: 1996, Astrophys. J. 466, 512.  DOI. ADSCrossRefGoogle Scholar
  48. Odstrčil, D., Pizzo, V.J.: 1999, J. Geophys. Res. 104, 493.  DOI. ADSCrossRefGoogle Scholar
  49. Odstrčil, D., Linker, J., Lionello, R., Mikić, Z., Riley, P., Pizzo, V.J., Luhmann, J.G.: 2002, J. Geophys. Res. 107, 1493.  DOI. CrossRefGoogle Scholar
  50. Quémerais, E., Lamy, P.: 2002, Astron. Astrophys. 393, 295.  DOI. ADSCrossRefGoogle Scholar
  51. Quémerais, E., Lallement, R., Koutroumpa, D., Lamy, P.: 2007, Astrophys. J. 667, 1229.  DOI. ADSCrossRefGoogle Scholar
  52. Ramesh, R., Kishore, P., Mulay, S.M., Barve, I.V., Kathiravan, C., Wang, T.J.: 2013, Astrophys. J. 778, 30.  DOI. ADSCrossRefGoogle Scholar
  53. Reames, D.V.: 1999, Space Sci. Rev. 90, 41.  DOI. CrossRefGoogle Scholar
  54. Riley, P., Linker, J.A., Mikić, Z.: 2001, J. Geophys. Res. 106, 15889.  DOI. ADSCrossRefGoogle Scholar
  55. Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, Astrophys. J. 653, 1510.  DOI. ADSCrossRefGoogle Scholar
  56. Saez, F., Llebaria, A., Lamy, P., Vibert, D.: 2007, Astron. Astrophys. 473, 265.  DOI. ADSCrossRefGoogle Scholar
  57. Saito, K.: 1970, Ann. Tokyo Astron. Obs., Ser. 2 12, 53. Google Scholar
  58. Saito, K., Poland, A.I., Munro, R.H.: 1977, Solar Phys. 55, 121.  DOI. ADSCrossRefGoogle Scholar
  59. Schulz, M.: 1973, Astrophys. Space Sci. 24, 371.  DOI. ADSCrossRefGoogle Scholar
  60. Shen, C., Liao, C., Wang, Y., Ye, P., Wang, S.: 2013, Solar Phys. 282, 543.  DOI. ADSCrossRefGoogle Scholar
  61. Sokolov, I.V., Roussev, I.I., Gombosi, T.I., Lee, M.A., Kóta, J., Forbes, T.G., Manchester, W.B., Sakai, J.I.: 2004, Astrophys. J. Lett. 616, L171.  DOI. ADSCrossRefGoogle Scholar
  62. Thompson, W.T.: 2006, Astron. Astrophys. 449, 791.  DOI. ADSCrossRefGoogle Scholar
  63. Thompson, W.T., Wei, K., Burkepile, J.T., Davila, J.M., St. Cyr, O.C.: 2010, Solar Phys. 262, 213.  DOI. ADSCrossRefGoogle Scholar
  64. Usmanov, A.V., Goldstein, M.L., Besser, B.P., Fritzer, J.M.: 2000, J. Geophys. Res. 105, 12675.  DOI. ADSCrossRefGoogle Scholar
  65. Van de Hulst, H.C.: 1950, Bull. Astron. Inst. Neth. 11, 135. ADS. ADSGoogle Scholar
  66. van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Astrophys. J. 782, 81.  DOI. ADSCrossRefGoogle Scholar
  67. Vásquez, A.M., Frazin, R.A., Hayashi, K., Sokolov, I.V., Cohen, O., Manchester, W.B. IV, Kamalabadi, F.: 2008, Astrophys. J. 682, 1328.  DOI. ADSCrossRefGoogle Scholar
  68. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, J. Geophys. Res. 109, 7105.  DOI. CrossRefGoogle Scholar
  69. Zucca, P., Carley, E.P., Bloomfield, D.S., Gallagher, P.T.: 2014, Astron. Astrophys. 564, 47.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhysicsCatholic University of AmericaWashingtonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations