Solar Physics

, Volume 289, Issue 8, pp 3207–3229 | Cite as

Evidence for Planetary Forcing of the Cosmic Ray Intensity and Solar Activity Throughout the Past 9400 Years

Article

Abstract

Paleo-cosmic-ray (PCR) records based on cosmogenic 10Be and 14C data are used to study the variations in cosmic-ray intensity and solar activity over the past 9400 years. There are four strong correlations with the motion of the Jovian planets; the probability of occurring by chance being < 10−5. They are i) the PCR periodicities at 87, 350, 510, and 710 years, which closely approximate integer multiples of half the Uranus–Neptune synodic period; ii) eight periodicities in the torques calculated to be exerted by the planets on an asymmetric tachocline that approximate the periods observed in the PCR; iii) the maxima of the long-term PCR variations are coincident with syzygy (alignment) of the four Jovian planets in 5272 and 644 BP; and iv) in the time domain, the PCR intensity decreases during the first 60 years of the ≈ 172 year Jose cycle (Jose, Astron. J. 70, 193, 1965) and increases in the remaining ≈ 112 years in association with barycentric anomalies in the distance between the Sun and the center of mass of the solar system. Furthermore, sunspot and neutron-monitor data show that three anomalous sunspot cycles (4th, 7th, and 20th) and the long sunspot minimum of 2006 – 2009 CE coincided with the first and second barycentric anomalies of the 58th and 59th Jose cycles. Phase lags between the planetary and heliospheric effects are ≤ five years. The 20 largest Grand Minima during the past 9400 years coincided with the latter half of the Jose cycle in which they occurred. These correlations are not of terrestrial origin, nor are they due to the planets’ contributing directly to the cosmic-ray modulation process in the heliosphere. Low cosmic-ray intensity (higher solar activity) occurred when Uranus and Neptune were in superior conjunction (mutual cancellation), while high intensities occurred when Uranus–Neptune were in inferior conjunction (additive effects). Many of the prominent peaks in the PCR Fourier spectrum can be explained in terms of the Jose cycle, and the occurrence of barycentric anomalies.

References

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. 10.1051/ooo4-6361/201219997. ADSCrossRefGoogle Scholar
  2. Beer, J., McCracken, K., von Steiger, R.: 2012, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments, Springer, Berlin. ISBN 978-3-642-14650-3. CrossRefGoogle Scholar
  3. Beer, J., McCracken, K.G., Abreu, J., Heikkila, U., Steinhilber, F.: 2011, Cosmogenic radionuclides as an extension of the neutron monitor era into the past: potential and limitations Space Sci. Rev.. 10.1007/s11214-011-9843-3. Google Scholar
  4. Cameron, R.H., Schüssler, M.: 2013, No evidence for planetary influence on solar activity Astron. Astrophys. 557A, 83C. 10.1051/0004-6361/201321713. CrossRefGoogle Scholar
  5. Charvatova, I.: 2000, Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion. Ann. Geophys. 18, 399. ADSCrossRefGoogle Scholar
  6. Cliver, E.W., Siscoe, G.L.: 1994, History of the discovery of the solar wind. EOS 75, 139. ADSCrossRefGoogle Scholar
  7. Dicke, R.H.: 1978, Is there a chronometer hidden deep in the Sun. Nature 276, 676. ADSCrossRefGoogle Scholar
  8. Eddy, J.A.: 1976, The Maunder Minimum. Science 192, 1189. ADSCrossRefGoogle Scholar
  9. Fairbridge, R.W., Shirley, J.H.: 1987, Prolonged minima and the 179-yr cycle of the solar inertial motion. Solar Phys. 110, 191. 10.1007/BF00148211. ADSCrossRefGoogle Scholar
  10. Gleeson, L.J., Axford, W.I.: 1968, Solar modulation of Galactic Cosmic Rays. Astrophys. J. 154, 1011 – 1026. 10.1086/149822, 1968ApJ...154.1011G. ADSCrossRefGoogle Scholar
  11. Jokipii, J.R.: 1991, Variations of the cosmic-ray flux with time. In: Sonett, C.P., Giampapa, M.S., Mathews, M.S. (eds.) The Sun in Time, Univ. Ariz. Press, Tucson, 205. Google Scholar
  12. Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193. ADSCrossRefGoogle Scholar
  13. Kelvin, W.T.: 1892, Presidential address to Roy. Soc. (London). Nature 47, 109. ADSGoogle Scholar
  14. Lal, D.: 1987, 10Be in polar ice: data reflect changes in cosmic ray flux or polar meteorology. Geophys. Res. Lett. 14, 785. ADSCrossRefGoogle Scholar
  15. Livingston, W.C., Penn, M.J.: 2009, Are sunspots different during this sunspot minimum? EOS 90, 257. ADSCrossRefGoogle Scholar
  16. McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F.: 2004, A phenomenological study of the long-term cosmic ray modulation, 850 – 1950 AD. J. Geophys. Res. 109, A12103. 10.1029/2004JA010685. ADSCrossRefGoogle Scholar
  17. McCracken, K., Beer, J., Steinhilber, F., Abreu, J.: 2011, The heliosphere in time. Space Sci. Rev. 10.1007/s11214-011-9843-3. MATHGoogle Scholar
  18. McCracken, K.G., Beer, J., Steinhilber, F., Abreu, J.: 2013, A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Solar Phys. 286, 609. 10.1007/s11297-013-0265-0. ADSCrossRefGoogle Scholar
  19. McDonald, F.B.: 1998, Cosmic ray modulation in the heliosphere. Space Sci. Rev. 83, 33. ADSCrossRefGoogle Scholar
  20. McDonald, F.B., Webber, W.R., Reames, D.V.: 2010, Unusual time histories of galactic and anomalous cosmic rays at 1 AU over the deep solar minimum of cycle 23/24 Geophys. Res. Lett. 37, L18101. ADSGoogle Scholar
  21. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128(3), 664. ADSCrossRefGoogle Scholar
  22. Parker, E.N.: 2000, The physics of the sun and the gateway to the stars. Phys. Today 53, 26. CrossRefGoogle Scholar
  23. Peristykh, A.N., Damon, P.E.: 2003, Persistence of the Gleissberg 88-year solar cycle over the past ∼ 12,000 years: evidence from cosmogenic isotopes. J. Geophys. Res. 108(A1), 1003. 10.1029/2002JA009390. CrossRefGoogle Scholar
  24. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeye, C.E.: 2009, Intcal09 and Marine09 radiocarbon age calibration curves, 0 – 50,000 years Cal Bp. Radiocarbon 51, 1111. Google Scholar
  25. Schrijver, C.J., DeRosa, M.L., Title, A.M.: 2002, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577, 1006. ADSCrossRefGoogle Scholar
  26. Sharp, G.J.: 2013, Are Uranus and Neptune responsible for solar grand minima and solar cycle modulation? Int. J. Astron. Astrophys. 3, 260. 10.4236/ijaa.2013.33031. CrossRefGoogle Scholar
  27. Solanki, S.K., Schüssler, M., Fligge, M.: 2002, Secular variation of the Sun’s magnetic flux. Astron. Astrophys. 383, 706. ADSCrossRefGoogle Scholar
  28. Sonett, C.P.: 1984, Very long solar periods and the radiocarbon record. Rev. Geophys. 22, 239. ADSCrossRefGoogle Scholar
  29. Steinhilber, F., Abreu, J.A., Beer, J., McCracken, K.G.: 2010, The interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. 115, A01104. 10.1029/2009JA014193. ADSGoogle Scholar
  30. Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F.: 2012, 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109. 10.1073/pnas1118965109.
  31. Stuiver, M., Quay, P.D.: 1980, Changes in atmospheric carbon-14 attributable to a variable Sun. Science 207, 11. ADSCrossRefGoogle Scholar
  32. Usoskin, I.G., Mursala, K., Kovaltsov, G.A.: 2002, Lost sunspot cycle in the beginning of the Dalton Minimum – new evidence and consequences. Geophys. Res. Lett. 29, 2183. 10.1029/2002GL015640. ADSCrossRefGoogle Scholar
  33. Usoskin, I.G., Mursala, K., Arit, R., Kovaltsov, G.A.: 2009, A solar cycle lost in 1793 – 1800: early sunspot observations resolve the old mystery. Astrophys. J. Lett. 700, L154. ADSCrossRefGoogle Scholar
  34. Wang, Y.-M., Lean, J., Sheeley, N.R.: 2002, Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys. J. Lett. 577, L53. ADSCrossRefGoogle Scholar
  35. Webber, W.R., Higbie, P.R.: 2010, What Voyager cosmic ray data in the outer heliosphere tells us about 10Be production in the Earth’s polar atmosphere in the recent past. J. Geophys. Res. 115(A5), A05102. 10.1029/2009JA014532, 2010JGRA..115.5102W. ADSGoogle Scholar
  36. Wilson, I.R.G.: 2006, Possible evidence of the de Vries, Gleissberg and Hale cycles in the Sun’s barycentric motion. Proc. Austral. Inst. Phys. Paper 625. Google Scholar
  37. Wilson, I.R.G., Carter, B.D., Waite, I.A.: 2008, Does a spin-orbit coupling between the Sun and the Jovian planets govern the solar cycle. Publ. Astron. Soc. Austral. 25, 85. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute for Physical Sciences and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.EawagDübendorfSwitzerland

Personalised recommendations