Skip to main content
Log in

The Compatibility of Flare Temperatures Observed with AIA, GOES, and RHESSI

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We test the compatibility and biases of multi-thermal flare DEM (differential emission measure) peak temperatures determined with AIA with those determined by GOES and RHESSI using the isothermal assumption. In a set of 149 M- and X-class flares observed during the first two years of the SDO mission, AIA finds DEM peak temperatures at the time of the peak GOES 1 – 8 Å flux to have an average of T p=12.0±2.9 MK and Gaussian DEM widths of log10(σ T )=0.50±0.13. From GOES observations of the same 149 events, a mean temperature of T p=15.6±2.4 MK is inferred, which is systematically higher by a factor of T GOES/T AIA=1.4±0.4. We demonstrate that this discrepancy results from the isothermal assumption in the inversion of the GOES filter ratio. From isothermal fits to photon spectra at energies of ϵ≈6 – 12 keV of 61 of these events, RHESSI finds the temperature to be higher still by a factor of T RHESSI/T AIA=1.9±1.0. We find that this is partly a consequence of the isothermal assumption. However, RHESSI is not sensitive to the low-temperature range of the DEM peak, and thus RHESSI samples only the high-temperature tail of the DEM function. This can also contribute to the discrepancy between AIA and RHESSI temperatures. The higher flare temperatures found by GOES and RHESSI imply correspondingly lower emission measures. We conclude that self-consistent flare DEM temperatures and emission measures require simultaneous fitting of EUV (AIA) and soft X-ray (GOES and RHESSI) fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aschwanden, M.J.: 2007, RHESSI timing studies: multithermal delays. Astrophys. J. 661, 1242 – 1259. 10.1086/516814 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2012, The spatio-temporal evolution of solar flares observed with AIA/SDO: Fractal diffusion, sub-diffusion, or logistic growth? Astrophys. J. 757, 94. 10.1088/0004-637X/757/1/94 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Alexander, D.: 2001, Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Solar Phys. 204, 91 – 120. 10.1023/A:1014257826116 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Shimizu, T.: 2013, Multi-wavelength observations of the spatio-temporal evolution of solar flares with AIA/SDO: II. Hydrodynamic scaling laws and thermal energies. Astrophys. J. 776, 132. 10.1088/0004-637X/776/2/132 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Stern, R.A., Güdel, M.: 2008, Scaling laws of solar and stellar flares. Astrophys. J. 672, 659 – 673. 10.1086/523926 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Zhang, J., Liu, K.: 2013, Multi-wavelength observations of the spatio-temporal evolution of solar flares with AIA/SDO. I. Universal scaling laws of space and time parameters. Astrophys. J. 775, 23. 10.1088/0004-637X/775/1/23 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Boerner, P., Schrijver, C.J., Malanushenko, A.: 2013, Automated temperature and emission measure analysis of coronal loops and active regions observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). Solar Phys. 283, 5 – 30. 10.1007/s11207-011-9876-5 .

    Article  ADS  Google Scholar 

  • Battaglia, M., Grigis, P.C., Benz, A.O.: 2005, Size dependence of solar X-ray flare properties. Astron. Astrophys. 439, 737 – 747. 10.1051/0004-6361:20053027 .

    Article  ADS  Google Scholar 

  • Brown, J.C.: 1974, On the thermal interpretation of hard X-ray bursts from solar flares. In: Newkirk, G.A. (ed.) Coronal Disturbances, IAU Symp. 57, 395 – 411.

    Chapter  Google Scholar 

  • Caspi, A., Lin, R.P.: 2010, RHESSI line and continuum observations of super-hot flare plasma. Astrophys. J. Lett. 725, L161 – L166. 10.1088/2041-8205/725/2/L161 .

    Article  ADS  Google Scholar 

  • Dulk, G.A., Dennis, B.R.: 1982, Microwaves and hard X-rays from solar flares – Multithermal and nonthermal interpretations. Astrophys. J. 260, 875 – 884. 10.1086/160306 .

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. 10.1088/0004-637X/759/1/71 .

    Article  ADS  Google Scholar 

  • Feldman, U., Mandelbaum, P., Seely, J.F., Doschek, G.A., Gursky, H.: 1992, The potential for plasma diagnostics from stellar extreme-ultraviolet observations. Astrophys. J. Suppl. 81, 387 – 408. 10.1086/191698 .

    Article  ADS  Google Scholar 

  • Feldman, U., Doschek, G.A., Behring, W.E., Phillips, K.J.H.: 1996, Electron temperature, emission measure, and X-ray flux in A2 to X2 X-ray class solar flares. Astrophys. J. 460, 1034 – 1041. 10.1086/177030 .

    Article  ADS  Google Scholar 

  • Graham, D.R., Hannah, I.G., Fletcher, L., Milligan, R.O.: 2013, The emission measure distribution of impulsive phase flare footpoints. Astrophys. J. 767, 83. 10.1088/0004-637X/767/1/83 .

    Article  ADS  Google Scholar 

  • Hannah, I.G., Christe, S., Krucker, S., Hurford, G.J., Hudson, H.S., Lin, R.P.: 2008, RHESSI microflare statistics. II. X-ray imaging, spectroscopy, and energy distributions. Astrophys. J. 677, 704 – 718. 10.1086/529012 .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40. 10.1007/s11207-011-9776-8 .

    Article  ADS  Google Scholar 

  • Lin, R.P., Schwartz, R.A., Pelling, R.M., Hurley, K.C.: 1981, A new component of hard X-rays in solar flares. Astrophys. J. Lett. 251, L109 – L114. 10.1086/183704 .

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3 – 32. 10.1023/A:1022428818870 .

    Article  ADS  Google Scholar 

  • Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. 133, 403 – 409. 10.1051/aas:1998330 .

    Article  ADS  Google Scholar 

  • McTiernan, J.M.: 2009, RHESSI/GOES observations of the nonflaring Sun from 2002 to 2006. Astrophys. J. 697, 94 – 99. 10.1088/0004-637X/697/1/94 .

    Article  ADS  Google Scholar 

  • Raftery, C.L., Gallagher, P.T., Milligan, R.O., Klimchuk, J.A.: 2009, Multi-wavelength observations and modelling of a canonical solar flare. Astron. Astrophys. 494, 1127 – 1136. 10.1051/0004-6361:200810437 .

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643 – 645. 10.1086/155949 .

    Article  ADS  Google Scholar 

  • Ryan, D.F., Milligan, R.O., Gallagher, P.T., Dennis, B.R., Tolbert, A.K., Schwartz, R.A., Young, C.A.: 2012, The thermal properties of solar flares over three solar cycles using GOES X-ray observations. Astrophys. J. Suppl. 202, 11. 10.1088/0067-0049/202/2/11 .

    Article  ADS  Google Scholar 

  • Ryan, D.F., Chamberlin, P.C., Milligan, R.O., Gallagher, P.T.: 2013, Decay-phase cooling and inferred heating of M- and X-class solar flares. Astrophys. J. 778, 68. 10.1088/0004-637X/778/1/68 .

    Article  ADS  Google Scholar 

  • Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D., Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., Madden, N.W., Malone, D., Pehl, R.H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I.S., Shirey, K., Schwartz, R.: 2002, The RHESSI spectrometer. Solar Phys. 210, 33 – 60. 10.1023/A:1022400716414 .

    Article  ADS  Google Scholar 

  • Thomas, R.J., Crannell, C.J., Starr, R.: 1985, Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Phys. 95, 323 – 329. 10.1007/BF00152409 .

    Article  ADS  Google Scholar 

  • White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements. Solar Phys. 227, 231 – 248. 10.1007/s11207-005-2445-z .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following for supporting this research: NASA (contract NNG04EA00C of the SDO/AIA instrument to LMSAL), the Fulbright Association, Catholic University of America, and the Irish Research Council. Thanks must also go to Richard A. Schwartz for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Aschwanden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, D.F., O’Flannagain, A.M., Aschwanden, M.J. et al. The Compatibility of Flare Temperatures Observed with AIA, GOES, and RHESSI. Sol Phys 289, 2547–2563 (2014). https://doi.org/10.1007/s11207-014-0492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0492-z

Keywords

Navigation