Solar Physics

, Volume 289, Issue 7, pp 2473–2485 | Cite as

Kink Oscillations of Thin Magnetic Tubes with Discontinuous Density

Article

Abstract

We consider kink oscillations of thin magnetic tubes with the equilibrium density discontinuous in the axial direction. The aim is to find out what boundary conditions have to be used at a contact discontinuity where the equilibrium density jumps. At a contact discontinuity perturbations of all quantities but the density have to be continuous. However, in the thin-tube approximation, all these conditions cannot be satisfied simultaneously. It is shown that in the thin-tube approximation, there is a boundary layer with the thickness of the order of the tube radius that embraces the contact discontinuity. In this boundary layer the variation of the loop displacement and its axial derivative is negligible. In contrast, the total pressure variation in the boundary layer is very strong. Hence, the correct boundary conditions at a contact discontinuity in the thin-tube approximation are the continuity of the tube displacement and its axial derivative.

Keywords

Sun, corona Magnetic fields Oscillations 

References

  1. Abramowitz, M., Stegun, I.A.: 1964, Handbook of Mathematical Functions, National Bureau of Standards, 361. Google Scholar
  2. Arregui, I., Soler, R., Ballester, J.L., Wright, A.N.: 2011, Astron. Astrophys. 533, A60. 10.1051/0004-6361/201117477. ADSCrossRefGoogle Scholar
  3. Bender, M., Ország, S.A.: 1987, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore, 484. Google Scholar
  4. Bracewell, R.N.: 1999, The Fourier Transforms and Its Applications, McGraw-Hill, New York, 244. Google Scholar
  5. Diaz, A.J., Oliver, R., Ballester, J.L.: 2002, Astrophys. J. 580, 550. 10.1086/343039. ADSCrossRefGoogle Scholar
  6. Diaz, A.J., Oliver, R., Ballester, J.L.: 2010, Astrophys. J. 725, 1742. 10.1088/0004-637X/725/2/1742. ADSCrossRefGoogle Scholar
  7. Dymova, M., Ruderman, M.S.: 2005, Solar Phys. 229, 79. 10.1007/s11207-007-9029-z. ADSCrossRefGoogle Scholar
  8. Goedbloed, J.P., Poedts, S.: 2004, Principles of Magnetohydrodynamics, Cambridge Univ. Press, Cambridge, 167. CrossRefGoogle Scholar
  9. Ruderman, M.S.: 2010, Solar Phys. 267, 377. 10.1007/s11207-010-9668-3. ADSCrossRefGoogle Scholar
  10. Ruderman, M.S.: 2011, Astron. Astrophys. 534, A78. 10.1051/0004-6361/201117416. ADSCrossRefGoogle Scholar
  11. Soler, R., Goossens, M.: 2011, Astron. Astrophys. 531, A167. 10.1051/0004-6361/201116536. ADSCrossRefGoogle Scholar
  12. Soler, R., Ruderman, M.S., Goossens, M.: 2012, Astron. Astrophys. 546, A82. 10.1051/0004-6361/201220111. ADSCrossRefGoogle Scholar
  13. Soler, R., Arregui, I., Oliver, R., Ballester, J.L.: 2010, Astrophys. J. 722, 1778. 10.1088/0004-637X/722/2/1778. ADSCrossRefGoogle Scholar
  14. Terradas, J., Arregui, I., Oliver, R., Ballester, J.L.: 2008, Astrophys. J. 678, L153. 10.1086/588728. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
  2. 2.Space Research Institute (IKI)Russian Academy of SciencesMoscowRussia

Personalised recommendations