Solar Physics

, Volume 289, Issue 7, pp 2433–2457 | Cite as

Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer–Langley Technique

  • D. Bolsée
  • N. Pereira
  • W. Decuyper
  • D. Gillotay
  • H. Yu
  • P. Sperfeld
  • S. Pape
  • E. Cuevas
  • A. Redondas
  • Y. Hernandéz
  • M. Weber
Article

Abstract

We describe an instrument dedicated to measuring the top of atmosphere (TOA) solar spectral irradiance (SSI) in the near-infrared (NIR) between 600 nm and 2300 nm at a resolution of 10 nm. Ground-based measurements are performed through atmospheric NIR windows and the TOA SSI values are extrapolated using the Bouguer–Langley technique. The interest in this spectral range arises because it plays a main role in the Earth’s radiative budget and also because it is employed to validate models used in solar physics. Moreover, some differences were observed between recent ground-based and space-based instruments that take measurements in the NIR and the reference SOLSPEC(ATLAS3) spectrum. In the 1.6 μm region, the deviations vary from 6 % to 10 %. Our measuring system named IRSPERAD has been designed by Bentham (UK) and has been radiometrically characterized and absolutely calibrated against a blackbody at the Belgian Institute for Space Aeronomy and at the Physikalisch-Technische Bundesanstalt (Germany), respectively. A four-month measurement campaign was carried out at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). A set of top-quality solar measurements was processed to obtain the TOA SSI in the NIR windows. We obtained an average standard uncertainty of 1 % for 0.8 μm<λ<2.3 μm. At 1.6 μm, corresponding to the minimum opacity of the solar photosphere, we obtained an irradiance of 234.31±1.29 mWm−2 nm−1. Between 1.6 μm and 2.3 μm, our measurements show a disagreement varying from 6 % to 8 % relative to ATLAS3, which is not explained by the declared standard uncertainties of the two experiments.

Keywords

Ground-based Near-infrared Solar spectral irradiance Top of atmosphere 

Supplementary material

References

  1. Arvesen, J.C., Griffin, R.N., Pearson, D.J.: 1969, Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Opt. 8, 2215 – 2232. ADSCrossRefGoogle Scholar
  2. Bolsée, D.: 2012, Métrologie de la spectrophotométrie solaire absolue. Principes, mise en oeuvre et résultats. Instrument SOLSPEC à bord de la Station Spatiale Internationale. Ph.D. thesis, Free University of Brussels. Google Scholar
  3. Cahalan, R., Pilewskie, P., Woods, T.: 2012, Free flyer Total and Spectral Solar Irradiance Sensor (TSIS) and climate services mission. EGU General Assembly 2012. Geophys. Res. Abstr. 14, 1886. Google Scholar
  4. Campbell, J., Hlavka, D., Welton, E., Flynn, C., Turner, D., Spinhirnem, J., Scott, V., Hwang, I.: 2002, Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Ocean. Technol. 19, 431 – 442. ADSCrossRefGoogle Scholar
  5. CIMO (Comission for Instruments and Methods of Observation): 2008, CIMO: Guide to Meteorological Instruments and Methods of Observation, WMO, Geneve, I.7-5. Google Scholar
  6. Cuevas, E., González, Y., Rodríguez, S., Guerra, J.C., Gómez-Peláez, A.J., Alonso-Pérez, S., Bustos, J., Milford, C.: 2013, Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos. Chem. Phys. 13, 1973 – 1998. ADSCrossRefGoogle Scholar
  7. Floyd, L.E., Herring, L.C., Prinz, D.K., Brueckner, G.E.: 1996, Maintaining calibration during the long-term space flight of the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM). In: Huffman, R.E., Stergis, C.G. (eds.) Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation, Proc. SPIE 23, 36 – 47. CrossRefGoogle Scholar
  8. Fontenla, J.M., Harder, J.W., Rottman, G., Woods, T.N., Lawrence, G.M., Davis, S.: 2004, The signature of solar activity in the infrared spectral irradiance. Astrophys. J. Lett. 605, L85 – L88. ADSCrossRefGoogle Scholar
  9. Fontenla, J.M., Avrett, E., Thuillier, G., Harder, J.: 2006, Semiempirical models of the solar atmosphere. I. The quiet and-active Sun photosphere at moderate resolution. Astrophys. J. 639, 441 – 458. ADSCrossRefGoogle Scholar
  10. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. 116, D20108. ADSCrossRefGoogle Scholar
  11. Friedrich, R., Fischer, J., Strock, M.: 1995, Accurate calibration of filter radiometers against a cryogenic radiometer using a trap detector. Metrologia 32, 509 – 513. ADSCrossRefGoogle Scholar
  12. García, R.D., García, O.E., Cuevas, E., Cachorro, V.E., Romero-Campos, P.M., Ramos, R., Frutos, A.M.: 2013, Solar irradiance measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. J. Geophys. Res. 10.1002/2013JD020301. Google Scholar
  13. Goldfarb, L., Keckhut, P., Chanin, M.L., Hauchecorne, A.: 2001, Cirrus climatological results from Lidar measurements at OHP. Geophys. Res. Lett. 28, 1687 – 1690. ADSCrossRefGoogle Scholar
  14. Gonzalez, Y., López, C., Cuevas, E.: 2012, Automatic observation of cloudiness: Analysis of all-sky images. In: WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Session 3. http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session3/O3_01_Gonzales_Automatic_obs_cloudiness.pdf. Google Scholar
  15. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, The SORCE SIM solar spectrum: Comparison with recent observations. Solar Phys. 263, 3 – 24. ADSCrossRefGoogle Scholar
  16. Harder, J., Lawrence, G., Rottman, G.J., Woods, T.N.: 2000, The Spectral Irradiance Monitor (SIM) for the SORCE mission. In: Barnes, W.L. (ed.) Earth Observing Systems V., Proc. SPIE 4135, 204 – 214. CrossRefGoogle Scholar
  17. Harder, J., Lawrence, G.M., Fontenla, J.M., Rottman, G., Woods, T.N.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. Solar Phys. 230, 141 – 167. ADSCrossRefGoogle Scholar
  18. Hernández, Y., Alonso-Pérez, S., Cuevas, E., de Bustos, J., Gomez-Peláez, A., Ramos, R., Córdoba-Jabonero, C., Gil, M.: 2012, Planetary boundary layer and Saharan air layer top height determination using ceilometer and micro pulse lidar intercomparison for two case studies. 2012 European Aerosol Conference, Abstract A-WG02S1P51. http://www.eac2012.com/EAC2012Book/files/1035.pdf.
  19. JCGM (Joint Committee for Guides in Metrology): 2008, Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, BIPM, Paris, 21 – 22. Google Scholar
  20. Kindel, B.C., Qu, Z., Goetz, A.F.H.: 2001, Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm. Appl. Opt. 40, 3483 – 3494. ADSCrossRefGoogle Scholar
  21. Kopp, G., Lawrence, G., Rottman, G.: 2005, The Total Irradiance Monitor (TIM): Science results. Solar Phys. 230, 129 – 140. ADSCrossRefGoogle Scholar
  22. Kruse, P.W., McGlauchlin, L.D., McQuistan, R.B.: 1962, Elements of Infrared Technology. Generation, Transmission and Detection, Wiley, New York, 265 – 268. Google Scholar
  23. Krystek, M., Anton, M.: 2007, A weighted total least-squares algorithm for fitting a straight line. Meas. Sci. Technol. 18, 3438 – 3442. ADSCrossRefGoogle Scholar
  24. Mandel, H., Labs, D., Thuillier, G., Hersé, M., Simon, P.C., Gillotay, D.: 1998, Calibration of the SOLSPEC spectrometer to measure the irradiance from space. Metrologia 35, 697 – 700. ADSCrossRefGoogle Scholar
  25. Menang, K.P., Ptashnik, I.V., Coleman, M.D., Gardiner, T.D., Shine, K.P.: 2013, A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements. J. Geophys. Res. 118, 1 – 13. Google Scholar
  26. Mohr, P.J., Taylor, B.N.: 2005, CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 77, 1 – 107. ADSCrossRefGoogle Scholar
  27. Neckel, H., Labs, D.: 1984, The solar spectrum between 3300 and 12500 Å. Solar Phys. 90, 205 – 258. ADSCrossRefGoogle Scholar
  28. Noël, S., Bovensmann, H., Burrows, J.P., Frerick, J., Chance, K.V., Goede, A.P., Muller, C.: 1998, SCIAMACHY instrument on ENVISAT-1. In: Fujisada, H. (ed.) Sensors, Systems, and Next-Generation Satellites II, Proc. SPIE 3498, 94 – 104. CrossRefGoogle Scholar
  29. Noël, S., Kokhanovsky, A.A., Jourdan, O., Gerilowski, K., Pfeilsticker, K., Weber, M., Bovensmann, H., Burrows, J.P.: 2007, SCIAMACHY reflectance and solar irradiance validation. In: Danesy, D. (ed.) Proc. Third Workshop on the Atmospheric Chemistry Validation of ENVISAT (ACVE-3), ESA SP-642, on CDROM. Google Scholar
  30. Pagaran, J., Weber, M., Burrows, J.P.: 2009, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884 – 1895. ADSCrossRefGoogle Scholar
  31. Pagaran, J., Harder, J.W., Weber, M., Floyd, L.E., Burrows, J.P.: 2011, Intercomparaison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales. Astron. Astrophys. 528, A67. ADSCrossRefGoogle Scholar
  32. Platt, C.M.R., Dilley, A.C.: 1984, Determination of the cirrus particle single scattering phase function from lidar and solar radiometric data. Appl. Opt. 23, 380 – 386. ADSCrossRefGoogle Scholar
  33. Puentedura, O., Gil, M., Saiz-Lopez, A., Hay, T., Navarro-Comas, M., Gomez-Pelaez, A., Cuevas, E., Iglesias, J., Gomez, L.: 2012, Iodine monoxide in the north subtropical free troposphere. Atmos. Chem. Phys. 12, 4909 – 4921. ADSCrossRefGoogle Scholar
  34. Rodríguez, S., González, Y., Cuevas, E., Ramos, R., Romero, P.M., Abreu-Afonso, J., Redondas, A.: 2009, Atmospheric nanoparticle observations in the low free troposphere during upward orographic flows at Izaña Mountain Observatory. Atmos. Chem. Phys. Discuss. 9, 10913 – 10956. ADSCrossRefGoogle Scholar
  35. Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., de la Rosa, J.: 2011, Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos. Chem. Phys. 11, 6663 – 6685. ADSCrossRefGoogle Scholar
  36. Sapritsky, V.I., Khlevnoy, B.B., Khromchenko, V.B., Lisiansky, B.E., Mekhontsev, S.N., Melenevsky, U.A., Morozova, S.P., Prokhorov, A.V., Samoilov, L.N., Shapoval, V.I., Sudarev, K.A., Zelener, M.F.: 1997, Precision blackbody sources for radiometric standards. Appl. Opt. 36, 5403 – 5408. ADSCrossRefGoogle Scholar
  37. Schmid, B., Wehrli, C.: 1995, Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. Appl. Opt. 34, 4500 – 4512. ADSCrossRefGoogle Scholar
  38. Shapiro, A., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys. 517, A48. ADSCrossRefGoogle Scholar
  39. Sperfeld, P., Pape, S., Barton, B.: 2010, From primary standard to mobile measurements. Overview of the spectral irradiance calibration equipment at PTB. Mapan 25, 11 – 19. CrossRefGoogle Scholar
  40. Sperfeld, P., Raatz, K.H., Nawo, B., Müller, W., Metzdorf, J.: 1995, Spectral-irradiance scale based on radiometric black-body temperature measurements. Metrologia 32, 435 – 439. ADSCrossRefGoogle Scholar
  41. Sperfeld, P., Metzdorf, J., Galal Yousef, S., Stock, K.D., Müller, W.: 1998a, Improvement and extension of the black-body-based spectral irradiance scale. Metrologia 35, 267 – 271. ADSCrossRefGoogle Scholar
  42. Sperfeld, P., Galal Yousef, S., Metzdorf, J., Nawo, B., Müller, W.: 2000, The use of self-consistent calibrations to recover absorption bands in the black-body spectrum. Metrologia 37, 373 – 376. ADSCrossRefGoogle Scholar
  43. Spurr, R.: 2008, LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In: Kokhanovsly, A. (ed.) Light Scattering Reviews 3, Springer, Berlin, 229 – 271. CrossRefGoogle Scholar
  44. Taubert, D.R., Friedrich, R., Hartmann, J., Hollandt, J.: 2003, Improved calibration of the spectral responsivity of interference filter radiometers in the visible and near infrared spectral range at PTB. Metrologia 40, S35 – S38. ADSCrossRefGoogle Scholar
  45. Thuillier, G., Simon, P.C., Labs, D., Pastiels, R., Neckel, H.: 1981, An instrument to measure the solar spectrum from 170 to 3200 nm on board Spacelab. Solar Phys. 74, 531 – 537. ADSCrossRefGoogle Scholar
  46. Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Phys. 214, 1 – 22. ADSCrossRefGoogle Scholar
  47. Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D.R., Hartmann, J.: 2009, SOLAR/SOLSPEC: Scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Solar Phys. 257, 185 – 213. ADSCrossRefGoogle Scholar
  48. Thuillier, G., Bolsée, D., Schmidtke, G., Foujols, T., Nikutowski, B., Shapiro, A., Schmutz, W., Brunner, R., Erhardt, C., Hersé, M., Gillotay, D., Petermanns, W., Decuyper, W., Pereira, N., Mandel, H.: 2013, The solar irradiance spectrum at solar activity minimum between solar cycles 23 and 24. Solar Phys. 10.1007/s11207-013-0461-y. Google Scholar
  49. Werner, L., Fischer, J., Johannsen, U., Hartmann, J.: 2000, Accurate determination of the spectral responsivity of silicon trap detectors between 238 and 1015 nm. Metrologia 37, 279 – 284. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. Bolsée
    • 1
  • N. Pereira
    • 1
  • W. Decuyper
    • 1
  • D. Gillotay
    • 1
  • H. Yu
    • 1
  • P. Sperfeld
    • 2
  • S. Pape
    • 2
  • E. Cuevas
    • 3
  • A. Redondas
    • 3
  • Y. Hernandéz
    • 3
  • M. Weber
    • 4
  1. 1.BIRA-IASBBrusselsBelgium
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany
  3. 3.Izaña Atmospheric Research Center (AEMET)TenerifeSpain
  4. 4.Institut für UmweltphysikUniversität BremenBremenGermany

Personalised recommendations