Skip to main content
Log in

Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer–Langley Technique

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We describe an instrument dedicated to measuring the top of atmosphere (TOA) solar spectral irradiance (SSI) in the near-infrared (NIR) between 600 nm and 2300 nm at a resolution of 10 nm. Ground-based measurements are performed through atmospheric NIR windows and the TOA SSI values are extrapolated using the Bouguer–Langley technique. The interest in this spectral range arises because it plays a main role in the Earth’s radiative budget and also because it is employed to validate models used in solar physics. Moreover, some differences were observed between recent ground-based and space-based instruments that take measurements in the NIR and the reference SOLSPEC(ATLAS3) spectrum. In the 1.6 μm region, the deviations vary from 6 % to 10 %. Our measuring system named IRSPERAD has been designed by Bentham (UK) and has been radiometrically characterized and absolutely calibrated against a blackbody at the Belgian Institute for Space Aeronomy and at the Physikalisch-Technische Bundesanstalt (Germany), respectively. A four-month measurement campaign was carried out at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). A set of top-quality solar measurements was processed to obtain the TOA SSI in the NIR windows. We obtained an average standard uncertainty of 1 % for 0.8 μm<λ<2.3 μm. At 1.6 μm, corresponding to the minimum opacity of the solar photosphere, we obtained an irradiance of 234.31±1.29 mWm−2 nm−1. Between 1.6 μm and 2.3 μm, our measurements show a disagreement varying from 6 % to 8 % relative to ATLAS3, which is not explained by the declared standard uncertainties of the two experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Arvesen, J.C., Griffin, R.N., Pearson, D.J.: 1969, Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Opt. 8, 2215 – 2232.

    Article  ADS  Google Scholar 

  • Bolsée, D.: 2012, Métrologie de la spectrophotométrie solaire absolue. Principes, mise en oeuvre et résultats. Instrument SOLSPEC à bord de la Station Spatiale Internationale. Ph.D. thesis, Free University of Brussels.

  • Cahalan, R., Pilewskie, P., Woods, T.: 2012, Free flyer Total and Spectral Solar Irradiance Sensor (TSIS) and climate services mission. EGU General Assembly 2012. Geophys. Res. Abstr. 14, 1886.

    Google Scholar 

  • Campbell, J., Hlavka, D., Welton, E., Flynn, C., Turner, D., Spinhirnem, J., Scott, V., Hwang, I.: 2002, Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Ocean. Technol. 19, 431 – 442.

    Article  ADS  Google Scholar 

  • CIMO (Comission for Instruments and Methods of Observation): 2008, CIMO: Guide to Meteorological Instruments and Methods of Observation, WMO, Geneve, I.7-5.

    Google Scholar 

  • Cuevas, E., González, Y., Rodríguez, S., Guerra, J.C., Gómez-Peláez, A.J., Alonso-Pérez, S., Bustos, J., Milford, C.: 2013, Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos. Chem. Phys. 13, 1973 – 1998.

    Article  ADS  Google Scholar 

  • Floyd, L.E., Herring, L.C., Prinz, D.K., Brueckner, G.E.: 1996, Maintaining calibration during the long-term space flight of the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM). In: Huffman, R.E., Stergis, C.G. (eds.) Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation, Proc. SPIE 23, 36 – 47.

    Chapter  Google Scholar 

  • Fontenla, J.M., Harder, J.W., Rottman, G., Woods, T.N., Lawrence, G.M., Davis, S.: 2004, The signature of solar activity in the infrared spectral irradiance. Astrophys. J. Lett. 605, L85 – L88.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Avrett, E., Thuillier, G., Harder, J.: 2006, Semiempirical models of the solar atmosphere. I. The quiet and-active Sun photosphere at moderate resolution. Astrophys. J. 639, 441 – 458.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. 116, D20108.

    Article  ADS  Google Scholar 

  • Friedrich, R., Fischer, J., Strock, M.: 1995, Accurate calibration of filter radiometers against a cryogenic radiometer using a trap detector. Metrologia 32, 509 – 513.

    Article  ADS  Google Scholar 

  • García, R.D., García, O.E., Cuevas, E., Cachorro, V.E., Romero-Campos, P.M., Ramos, R., Frutos, A.M.: 2013, Solar irradiance measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. J. Geophys. Res. 10.1002/2013JD020301 .

    Google Scholar 

  • Goldfarb, L., Keckhut, P., Chanin, M.L., Hauchecorne, A.: 2001, Cirrus climatological results from Lidar measurements at OHP. Geophys. Res. Lett. 28, 1687 – 1690.

    Article  ADS  Google Scholar 

  • Gonzalez, Y., López, C., Cuevas, E.: 2012, Automatic observation of cloudiness: Analysis of all-sky images. In: WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Session 3. http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session3/O3_01_Gonzales_Automatic_obs_cloudiness.pdf .

    Google Scholar 

  • Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, The SORCE SIM solar spectrum: Comparison with recent observations. Solar Phys. 263, 3 – 24.

    Article  ADS  Google Scholar 

  • Harder, J., Lawrence, G., Rottman, G.J., Woods, T.N.: 2000, The Spectral Irradiance Monitor (SIM) for the SORCE mission. In: Barnes, W.L. (ed.) Earth Observing Systems V., Proc. SPIE 4135, 204 – 214.

    Chapter  Google Scholar 

  • Harder, J., Lawrence, G.M., Fontenla, J.M., Rottman, G., Woods, T.N.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. Solar Phys. 230, 141 – 167.

    Article  ADS  Google Scholar 

  • Hernández, Y., Alonso-Pérez, S., Cuevas, E., de Bustos, J., Gomez-Peláez, A., Ramos, R., Córdoba-Jabonero, C., Gil, M.: 2012, Planetary boundary layer and Saharan air layer top height determination using ceilometer and micro pulse lidar intercomparison for two case studies. 2012 European Aerosol Conference, Abstract A-WG02S1P51. http://www.eac2012.com/EAC2012Book/files/1035.pdf .

  • JCGM (Joint Committee for Guides in Metrology): 2008, Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, BIPM, Paris, 21 – 22.

    Google Scholar 

  • Kindel, B.C., Qu, Z., Goetz, A.F.H.: 2001, Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm. Appl. Opt. 40, 3483 – 3494.

    Article  ADS  Google Scholar 

  • Kopp, G., Lawrence, G., Rottman, G.: 2005, The Total Irradiance Monitor (TIM): Science results. Solar Phys. 230, 129 – 140.

    Article  ADS  Google Scholar 

  • Kruse, P.W., McGlauchlin, L.D., McQuistan, R.B.: 1962, Elements of Infrared Technology. Generation, Transmission and Detection, Wiley, New York, 265 – 268.

    Google Scholar 

  • Krystek, M., Anton, M.: 2007, A weighted total least-squares algorithm for fitting a straight line. Meas. Sci. Technol. 18, 3438 – 3442.

    Article  ADS  Google Scholar 

  • Mandel, H., Labs, D., Thuillier, G., Hersé, M., Simon, P.C., Gillotay, D.: 1998, Calibration of the SOLSPEC spectrometer to measure the irradiance from space. Metrologia 35, 697 – 700.

    Article  ADS  Google Scholar 

  • Menang, K.P., Ptashnik, I.V., Coleman, M.D., Gardiner, T.D., Shine, K.P.: 2013, A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements. J. Geophys. Res. 118, 1 – 13.

    Google Scholar 

  • Mohr, P.J., Taylor, B.N.: 2005, CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 77, 1 – 107.

    Article  ADS  Google Scholar 

  • Neckel, H., Labs, D.: 1984, The solar spectrum between 3300 and 12500 Å. Solar Phys. 90, 205 – 258.

    Article  ADS  Google Scholar 

  • Noël, S., Bovensmann, H., Burrows, J.P., Frerick, J., Chance, K.V., Goede, A.P., Muller, C.: 1998, SCIAMACHY instrument on ENVISAT-1. In: Fujisada, H. (ed.) Sensors, Systems, and Next-Generation Satellites II, Proc. SPIE 3498, 94 – 104.

    Chapter  Google Scholar 

  • Noël, S., Kokhanovsky, A.A., Jourdan, O., Gerilowski, K., Pfeilsticker, K., Weber, M., Bovensmann, H., Burrows, J.P.: 2007, SCIAMACHY reflectance and solar irradiance validation. In: Danesy, D. (ed.) Proc. Third Workshop on the Atmospheric Chemistry Validation of ENVISAT (ACVE-3), ESA SP-642, on CDROM.

    Google Scholar 

  • Pagaran, J., Weber, M., Burrows, J.P.: 2009, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884 – 1895.

    Article  ADS  Google Scholar 

  • Pagaran, J., Harder, J.W., Weber, M., Floyd, L.E., Burrows, J.P.: 2011, Intercomparaison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales. Astron. Astrophys. 528, A67.

    Article  ADS  Google Scholar 

  • Platt, C.M.R., Dilley, A.C.: 1984, Determination of the cirrus particle single scattering phase function from lidar and solar radiometric data. Appl. Opt. 23, 380 – 386.

    Article  ADS  Google Scholar 

  • Puentedura, O., Gil, M., Saiz-Lopez, A., Hay, T., Navarro-Comas, M., Gomez-Pelaez, A., Cuevas, E., Iglesias, J., Gomez, L.: 2012, Iodine monoxide in the north subtropical free troposphere. Atmos. Chem. Phys. 12, 4909 – 4921.

    Article  ADS  Google Scholar 

  • Rodríguez, S., González, Y., Cuevas, E., Ramos, R., Romero, P.M., Abreu-Afonso, J., Redondas, A.: 2009, Atmospheric nanoparticle observations in the low free troposphere during upward orographic flows at Izaña Mountain Observatory. Atmos. Chem. Phys. Discuss. 9, 10913 – 10956.

    Article  ADS  Google Scholar 

  • Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., de la Rosa, J.: 2011, Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos. Chem. Phys. 11, 6663 – 6685.

    Article  ADS  Google Scholar 

  • Sapritsky, V.I., Khlevnoy, B.B., Khromchenko, V.B., Lisiansky, B.E., Mekhontsev, S.N., Melenevsky, U.A., Morozova, S.P., Prokhorov, A.V., Samoilov, L.N., Shapoval, V.I., Sudarev, K.A., Zelener, M.F.: 1997, Precision blackbody sources for radiometric standards. Appl. Opt. 36, 5403 – 5408.

    Article  ADS  Google Scholar 

  • Schmid, B., Wehrli, C.: 1995, Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. Appl. Opt. 34, 4500 – 4512.

    Article  ADS  Google Scholar 

  • Shapiro, A., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys. 517, A48.

    Article  ADS  Google Scholar 

  • Sperfeld, P., Pape, S., Barton, B.: 2010, From primary standard to mobile measurements. Overview of the spectral irradiance calibration equipment at PTB. Mapan 25, 11 – 19.

    Article  Google Scholar 

  • Sperfeld, P., Raatz, K.H., Nawo, B., Müller, W., Metzdorf, J.: 1995, Spectral-irradiance scale based on radiometric black-body temperature measurements. Metrologia 32, 435 – 439.

    Article  ADS  Google Scholar 

  • Sperfeld, P., Metzdorf, J., Galal Yousef, S., Stock, K.D., Müller, W.: 1998a, Improvement and extension of the black-body-based spectral irradiance scale. Metrologia 35, 267 – 271.

    Article  ADS  Google Scholar 

  • Sperfeld, P., Galal Yousef, S., Metzdorf, J., Nawo, B., Müller, W.: 2000, The use of self-consistent calibrations to recover absorption bands in the black-body spectrum. Metrologia 37, 373 – 376.

    Article  ADS  Google Scholar 

  • Spurr, R.: 2008, LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In: Kokhanovsly, A. (ed.) Light Scattering Reviews 3, Springer, Berlin, 229 – 271.

    Chapter  Google Scholar 

  • Taubert, D.R., Friedrich, R., Hartmann, J., Hollandt, J.: 2003, Improved calibration of the spectral responsivity of interference filter radiometers in the visible and near infrared spectral range at PTB. Metrologia 40, S35 – S38.

    Article  ADS  Google Scholar 

  • Thuillier, G., Simon, P.C., Labs, D., Pastiels, R., Neckel, H.: 1981, An instrument to measure the solar spectrum from 170 to 3200 nm on board Spacelab. Solar Phys. 74, 531 – 537.

    Article  ADS  Google Scholar 

  • Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Phys. 214, 1 – 22.

    Article  ADS  Google Scholar 

  • Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D.R., Hartmann, J.: 2009, SOLAR/SOLSPEC: Scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Solar Phys. 257, 185 – 213.

    Article  ADS  Google Scholar 

  • Thuillier, G., Bolsée, D., Schmidtke, G., Foujols, T., Nikutowski, B., Shapiro, A., Schmutz, W., Brunner, R., Erhardt, C., Hersé, M., Gillotay, D., Petermanns, W., Decuyper, W., Pereira, N., Mandel, H.: 2013, The solar irradiance spectrum at solar activity minimum between solar cycles 23 and 24. Solar Phys. 10.1007/s11207-013-0461-y .

    Google Scholar 

  • Werner, L., Fischer, J., Johannsen, U., Hartmann, J.: 2000, Accurate determination of the spectral responsivity of silicon trap detectors between 238 and 1015 nm. Metrologia 37, 279 – 284.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the Izaña Atmospheric Observatory (IZO, Tenerife) for kindly supporting the campaign, and especially Ramón Ramos, IZO field manager, our colleague Christine Bingen for her thorough reviews of the manuscript, Bruce C. Kindel (University of Colorado, Boulder, USA) for the interest in our work and for kindly providing us the calculations with MODTRAN of the valid Bouguer–Langley channels in the NIR for the 10 nm bandpass of our instrument. M. Weber acknowledges the financial support from the EU SOLID project. The authors acknowledge the support from the Belgian Federal Science Policy Office (BELSPO) through the ESA-PRODEX program and the funding of the Solar-Terrestrial Centre of Excellence (STCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bolsée.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DAT 3 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolsée, D., Pereira, N., Decuyper, W. et al. Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer–Langley Technique. Sol Phys 289, 2433–2457 (2014). https://doi.org/10.1007/s11207-014-0474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0474-1

Keywords

Navigation