Abstract
Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization affects the result, however. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within 1 μHz for low-degree modes with frequencies near 3 mHz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.
This is a preview of subscription content, access via your institution.








References
Aerts, C., Christensen-Dalsgaard, J., Kurtz, D.W.: 2010, Asteroseismology, Springer, Berlin, 237.
Braun, D.C., Birch, A.C., Rempel, M., Duvall, T.L.: 2012, Helioseismology of a realistic magnetoconvective sunspot simulation. Astrophys. J. 744, 77. doi: 10.1088/0004-637X/744/1/77 .
Cameron, R., Gizon, L., Daiffallah, K.: 2007, SLiM: A code for the simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere. Astron. Nachr. 328, 313. doi: 10.1002/asna.200610736 .
Chaplin, W.J., Elsworth, Y., Isaak, G.R., Marchenkov, K.I., Miller, B.A., New, R., Pinter, B., Appourchaux, T.: 2002, Peak finding at low signal–to–noise ratio: Low-l solar acoustic eigenmodes at n≤9 from the analysis of BiSON data. Mon. Not. Roy. Astron. Soc. 336, 979. doi: 10.1046/j.1365-8711.2002.05834.x .
Christensen-Dalsgaard, J.: 2002, Helioseismology. Rev. Mod. Phys. 74, 1073. doi: 10.1103/RevModPhys.74.1073 .
Christensen-Dalsgaard, J.: 2008a, ADIPLS – The Aarhus adiabatic oscillation package. Astrophys. Space Sci. 316, 113. doi: 10.1007/s10509-007-9689-z .
Christensen-Dalsgaard, J.: 2008b, ASTEC – The Aarhus STellar evolution code. Astrophys. Space Sci. 316, 13.
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286. doi: 10.1126/science.272.5266.1286 .
Dahlen, F.A., Tromp, J.: 1998, Theoretical Global Seismology, Princeton University Press, Princeton, 118.
Gizon, L.: 2013, Seismology of the Sun. In: Gmati, N., Haddar, H. (eds.) Proc. 11th Internat. Conf. on Mathematical and Numerical Aspects of Waves, 23. www.lamsin.tn/waves13/proceedings.pdf .
Gizon, L., Birch, A.C., Spruit, H.C.: 2010, Local helioseismology: Three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289. doi: 10.1146/annurev-astro-082708-101722 .
Gough, D.O., Tayler, R.J.: 1966, The influence of a magnetic field on Schwarzschild’s criterion for convective instability in an ideally conducting fluid. Mon. Not. Roy. Astron. Soc. 133, 85.
Hanasoge, S.M., Duvall, T.L. Jr.: 2007, The solar acoustic simulator: Applications and results. Astron. Nachr. 328, 319. doi: 10.1002/asna.200610737 .
Hanasoge, S.M., Larsen, R.M., Duvall, T.L. Jr., De Rosa, M.L., Hurlburt, N.E., Schou, J., Roth, M., Christensen-Dalsgaard, J., Lele, S.K.: 2006, Computational acoustics in spherical geometry: Steps toward validating helioseismology. Astrophys. J. 648, 1268. doi: 10.1086/505927 .
Hanasoge, S.M., Birch, A., Gizon, L., Tromp, J.: 2011, The adjoint method applied to time-distance helioseismology. Astrophys. J. 738, 100. doi: 10.1088/0004-637X/738/1/100 .
Hansen, C.J., Cox, J.P., van Horn, H.M.: 1977, The effects of differential rotation on the splitting of nonradial modes of stellar oscillation. Astrophys. J. 217, 151. doi: 10.1086/155564 .
Hartlep, T., Zhao, J., Mansour, N.N., Kosovichev, A.G.: 2008, Validating time-distance far-side imaging of solar active regions through numerical simulations. Astrophys. J. 689, 1373. doi: 10.1086/592721 .
Khomenko, E., Collados, M.: 2006, Numerical modeling of magnetohydrodynamic wave propagation and refraction in sunspots. Astrophys. J. 653(1), 739. doi: 10.1086/507760 .
Lynden-Bell, D., Ostriker, J.P.: 1967, On the stability of differentially rotating bodies. Mon. Not. Roy. Astron. Soc. 136, 293.
Monteiro, M.J.P.F.G.: 2009, Evolution and Seismic Tools for Stellar Astrophysics, Springer, Berlin.
Moreno-Insertis, F., Spruit, H.C.: 1989, Stability of sunspots to convective motions. I – Adiabatic instability. Astrophys. J. 342, 1158. doi: 10.1086/167673 .
Parchevsky, K.V., Kosovichev, A.G.: 2007, Three-dimensional numerical simulations of the acoustic wave field in the upper convection zone of the Sun. Astrophys. J. 666, 547. doi: 10.1086/520108 .
Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. doi: 10.1007/s11207-011-9834-2 .
Schunker, H., Cameron, R.H., Gizon, L., Moradi, H.: 2011, Constructing and characterising solar structure models for computational helioseismology. Solar Phys. 271, 1. doi: 10.1007/s11207-011-9790-x .
Schwarzschild, K.: 1906, On the equilibrium of the Sun’s atmosphere. Göttinger Nachr., 41.
Shelyag, S., Erdélyi, R., Thompson, M.J.: 2006, Forward modeling of acoustic wave propagation in the quiet solar subphotosphere. Astrophys. J. 651, 576. doi: 10.1086/507463 .
Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields – I. Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365.
Trampedach, R.: 2010, Convection in stellar models. Astrophys. Space Sci. 328, 213. doi: 10.1007/s10509-010-0329-7 .
Tromp, J., Tape, C., Liu, Q.: 2005, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160, 195. doi: 10.1111/j.1365-246X.2004.02453.x .
Acknowledgements
The authors acknowledge research funding by the Deutsche Forschungsgemeinschaft (DFG) under the grant SFB 963/1 project A18. We used data provided by M. Rempel at the National Center for Atmospheric Research (NCAR). Support for the production of the data was provided by the NASA Solar Dynamics Observatory (SDO) Science Center program through grant NNH09AK021 awarded to NCAR and contract NNH09CE41C awarded to NWRA. The National Center for Atmospheric Research is sponsored by the National Science Foundation. LG acknowledges support from EU FP7 Collaborative Project Exploitation of Space Data for Innovative Helio- and Asteroseismology (SPACEINN). We used data provided by BiSON, funded by the UK Science and Technology Facilities Council (STFC). We thank Robert Cameron for comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Papini, E., Gizon, L. & Birch, A.C. Propagating Linear Waves in Convectively Unstable Stellar Models: A Perturbative Approach. Sol Phys 289, 1919–1929 (2014). https://doi.org/10.1007/s11207-013-0457-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11207-013-0457-7
Keywords
- Stellar models
- Helioseismology
- Magnetic fields
- Numerical methods