Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

Abstract

Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Adams, R., Bischof, L.: 1994, Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641 – 647.

    Article  Google Scholar 

  2. Aranda, M.C., Caballero, C.: 2010, Automatic detection of active region on EUV solar images using fuzzy clustering. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Computational Intelligence for Knowledge-Based Systems Design, Lecture Notes in Computer Science 6178, Springer, Berlin, 69 – 78.

    Google Scholar 

  3. Aschwanden, M.: 2010, Image processing techniques and feature recognition in solar physics. Solar Phys. 262, 235 – 275. ADS: 2010SoPh..262..235A , doi: 10.1007/s11207-009-9474-y .

    ADS  Article  Google Scholar 

  4. Banda, J.M., Angryk, R.A.: 2009, On the effectiveness of fuzzy clustering as a data discretization technique for large-scale classification of solar images. In: IEEE International Conference on Fuzzy Systems, 2019 – 2024.

    Google Scholar 

  5. Benkhalil, A., Zharkova, V., Ipson, S., Zharkov, S.: 2006, Active region detection and verification with the solar feature catalogue. Solar Phys. 235, 87 – 106. ADS: 2006SoPh..235...87B , doi: 10.1007/s11207-006-0023-7 .

    ADS  Article  Google Scholar 

  6. Bezdek, J.C.: 1981, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.

    Google Scholar 

  7. Borda, R.A.F., Mininni, P.D., Mandrini, C.H., Gómez, D.O., Bauer, O.H., Rovira, M.G.: 2002, Automatic solar flare detection using neural network techniques. Solar Phys. 206, 347 – 357. ADS: 2002SoPh..206..347B , doi: 10.1023/A:1015043621346 .

    ADS  Article  Google Scholar 

  8. Caballero, C., Aranda, M.C.: 2012, Segmenting active regions on solar EUV images. In: Giamberardino, P., Iacoviello, D., Tavares, J., Natal, R. (eds.) Computational Modeling of Objects Presented in Images: Fundamentals, Methods and Applications (CompIMAGE 2012), Rome, Italy.

    Google Scholar 

  9. Carrington, R.C.: 1859, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc. 20, 13 – 15.

    ADS  Google Scholar 

  10. Colak, T., Qahwaji, R.: 2007, Automated prediction of solar flares using neural networks and sunspots associations. Adv. Soft Comput. 39, 316 – 324.

    Article  Google Scholar 

  11. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291 – 312. ADS: 1995SoPh..162..291D , doi: 10.1007/BF00733432 .

    ADS  Article  Google Scholar 

  12. Dere, K.P., Moses, J.D., Delaboudiniére, J.-P., Brunaud, J., Carabetian, C., Hochedez, J.-F., Song, X.Y., Catura, R.C., Clette, F., Defise, J.-M.: 2000, The preflight photometric calibration of the extreme-ultraviolet imaging telescope EIT. Solar Phys. 195, 13 – 44. ADS: 2000SoPh..195...13D , doi: 10.1023/A:1005288008723 .

    ADS  Article  Google Scholar 

  13. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1 – 37. ADS: 1995SoPh..162....1D , doi: 10.1007/BF00733425 .

    ADS  Article  Google Scholar 

  14. Fletcher, L., Pollock, J.A., Potts, H.E.: 2004, Tracking of trace ultraviolet flare footpoints. Solar Phys. 222, 279 – 298. ADS: 2004SoPh..222..279F , doi: 10.1023/B:SOLA.0000043580.89730.4d .

    ADS  Article  Google Scholar 

  15. Gath, I., Geva, A.B.: 1989, Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11, 773 – 781.

    Article  Google Scholar 

  16. Gill, C., Fletcher, L., Marshall, S.: 2010, Using active contours for semi-automated tracking of UV and EUV solar flare ribbons. Solar Phys. 262, 355 – 371. ADS: 2010SoPh..262..355G , doi: 10.1007/s11207-010-9508-5 .

    ADS  Article  Google Scholar 

  17. Gustafson, D.E., Kessel, W.C.: 1978, Fuzzy clustering with a fuzzy covariance matrix. In: Larson, R., Willsky, A., Mendel, J. (eds.) IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, IEEE, New York, 761 – 766.

    Google Scholar 

  18. Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105 – 2117.

    ADS  Article  Google Scholar 

  19. Howard, R.: 1978, The rotation of the Sun. Rev. Geophys. 16, 721 – 732.

    ADS  Article  Google Scholar 

  20. Howard, R.F., Harvey, J.W., Forgach, S.: 1990, Solar surface velocity fields determined from small magnetic features. Solar Phys. 130, 295 – 311. ADS: 1990SoPh..130..295H , doi: 10.1007/BF00156795 .

    ADS  Article  Google Scholar 

  21. Kaufman, L., Rousseeuw, P.J.: 1990, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, Wiley-Interscience, New York.

    Google Scholar 

  22. LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671(1), 955 – 963.

    ADS  Article  Google Scholar 

  23. Liu, C., Deng, N., Liu, Y., Falconer, D., Goode, P.R., Denker, C., Wang, H.: 2005, Rapid change of δ spot structure associated with seven major flares. Astrophys. J. 622, 722 – 736.

    ADS  Article  Google Scholar 

  24. Macqueen, J.B.: 1967, Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, University of California Press, Berkeley, 281 – 297.

    Google Scholar 

  25. McAteer, R., Gallagher, P., Ireland, J., Young, C.: 2005, Automated boundary-extraction and region-growing techniques applied to solar magnetograms. Solar Phys. 228, 55 – 66. ADS: 2005SoPh..228...55M , doi: 10.1007/s11207-005-4075-x .

    ADS  Article  Google Scholar 

  26. Qahwaji, R., Colak, T.: 2006, Automatic detection and verification of solar features. Int. J. Imaging Syst. Technol. 4, 199 – 210.

    Google Scholar 

  27. Qahwaji, R., Colak, T.: 2007, Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys. 241(1), 195 – 211. ADS: 2007SoPh..241..195Q , doi: 10.1007/s11207-006-0272-5 .

    ADS  Article  Google Scholar 

  28. Qu, M., Shih, F.Y., Jing, J., Wang, H.: 2003, Automatic solar flare detection using MLP, RBF, and SVM. Solar Phys. 217, 157 – 172. ADS: 2003SoPh..217..157Q , doi: 10.1023/A:1027388729489 .

    ADS  Article  Google Scholar 

  29. Saba, J.L.R., Gaeng, T., Tarbell, T.D.: 2006, Analysis of solar flare ribbon evolution: a semiautomated approach. Astrophys. J. 641(2), 1197 – 1209.

    ADS  Article  Google Scholar 

  30. Sharma, S.: 1996, Applied Multivariate Techniques, Wiley, New York.

    Google Scholar 

  31. Steinhaus, H.: 1956, Sur la division des corp materiels en parties. Bull. Acad. Pol. Sci 1, 801 – 804.

    Google Scholar 

  32. Zharkova, V., Ipson, S., Benkhalil, A., Zharkov, S.: 2005, Feature recognition in solar images. Artif. Intell. Rev. 23, 209 – 266.

    Article  Google Scholar 

  33. Zirin, H., Liggett, M.A.: 1987, Delta spots and great flares. Solar Phys. 113, 267 – 281. ADS: 1982SoPh..113..267Z , doi: 10.1007/BF00147707 .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the project TIC07-02861 of the Junta de Andalucía (Spain). EIT was funded by CNES, NASA, and the Belgian SPPS. SOHO is a mission of international cooperation between ESA and NASA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Caballero.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caballero, C., Aranda, M.C. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images. Sol Phys 289, 1643–1661 (2014). https://doi.org/10.1007/s11207-013-0415-4

Download citation

Keywords

  • Active regions
  • Flares, pre-flare phenomena