Solar Physics

, Volume 289, Issue 4, pp 1153–1171 | Cite as

Nonlinear Force-Free Modeling of the Corona in Spherical Coordinates

  • S. A. Gilchrist
  • M. S. Wheatland


We present a code for solving the nonlinear force-free equations in spherical polar geometry, with the motivation of modeling the magnetic field in the corona. The code is an implementation of the Grad–Rubin method. Our method is applicable to a spherical domain of arbitrary angular size. The implementation is based on a global spectral representation for the magnetic field that makes no explicit assumptions about the form of the magnetic field at the transverse boundaries of the domain. We apply the code to a bipolar test case with analytic boundary conditions, and demonstrate the convergence of the Grad–Rubin method and the self-consistency of the resulting numerical solution.


Field Line Coronal Magnetic Field Asymptotic Boundary Condition Transverse Boundary Vector Spherical Harmonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S.A. Gilchrist acknowledges the support of an Australian Postgraduate Research Award.


  1. Alissandrakis, C.E.: 1981, Astron. Astrophys. 100, 197. ADSGoogle Scholar
  2. Altschuler, M.D., Newkirk, G.: 1969, Solar Phys. 9, 131. doi: 10.1007/BF00145734. ADSCrossRefGoogle Scholar
  3. Amari, T., Boulmezaoud, T.Z., Mikic, Z.: 1999, Astron. Astrophys. 350, 1051. ADSGoogle Scholar
  4. Amari, T., Aly, J.J., Canou, A., Mikic, Z.: 2013, Astron. Astrophys. 553, A43. doi: 10.1051/0004-6361/201220787. ADSCrossRefGoogle Scholar
  5. Barrera, R.G., Estévez, G.A., Giraldo, J.: 1985, Eur. J. Phys. 6, 287. CrossRefGoogle Scholar
  6. Boyd, J.P.: 2001, Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York, 380. zbMATHGoogle Scholar
  7. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: 2001, Parallel Programming in OpenMP, Morgan Kaufmann, San Francisco, 1. Google Scholar
  8. De Rosa, M.L., Schrijver, C.J., Barnes, G., Leka, K.D., Lites, B.W., Aschwanden, M.J., et al.: 2009, Astrophys. J. 696, 1780. doi: 10.1088/0004-637X/696/2/1780. ADSCrossRefGoogle Scholar
  9. Dennis, S.R., Quartapelle, L.: 1985, J. Comput. Phys. 61, 218. MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. Gary, G.A.: 2001, Solar Phys. 203, 71. ADSCrossRefGoogle Scholar
  11. Gary, G.A., Hagyard, M.J.: 1990, Solar Phys. 126, 21. ADSCrossRefGoogle Scholar
  12. Grad, H., Rubin, H.: 1958, In: Proc. 2nd Int. Conf. Peaceful Uses of Atomic Energy 31, 190. Google Scholar
  13. Jackson, J.D.: 1998, Classical Electrodynamics, 3rd edn. Wiley, New York, 180. Google Scholar
  14. Landi Degl’Innocenti, E., Landolfi, M.: 2004, Polarization in Spectral Lines, Kluwer Academic, Dordrecht, 625. Google Scholar
  15. Low, B.C., Lou, Y.Q.: 1990, Astrophys. J. 352, 343. doi: 10.1086/168541. ADSCrossRefGoogle Scholar
  16. Metcalf, T.R., Jiao, L., McClymont, A.N., Canfield, R.C., Uitenbroek, H.: 1995, Astrophys. J. 439, 474. doi: 10.1086/175188. ADSCrossRefGoogle Scholar
  17. Molodensky, M.M.: 1974, Solar Phys. 39, 393. doi: 10.1007/BF00162432. ADSCrossRefGoogle Scholar
  18. Morse, P.M., Feshbach, H.: 1953, Methods of Theoretical Physics, Part Two, McGraw-Hill, New York, 1252. Google Scholar
  19. Nakagawa, Y., Raadu, M.A.: 1972, Solar Phys. 25, 127. doi: 10.1007/BF00155751. ADSCrossRefGoogle Scholar
  20. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, Solar Phys. 275, 3. doi: 10.1007/s11207-011-9841-3. ADSCrossRefGoogle Scholar
  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, 292. zbMATHGoogle Scholar
  22. Régnier, S.: 2009, Astron. Astrophys. 497, 17. doi: 10.1051/0004-6361/200811502. CrossRefGoogle Scholar
  23. Régnier, S.: 2012, Solar Phys. 277, 131. doi: 10.1007/s11207-011-9830-6. ADSCrossRefGoogle Scholar
  24. Sakurai, T.: 1981, Solar Phys. 69, 343. doi: 10.1007/BF00149999. ADSCrossRefGoogle Scholar
  25. Sakurai, T.: 1989, Space Sci. Rev. 51, 11. doi: 10.1007/BF00226267. ADSGoogle Scholar
  26. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Solar Phys. 275, 229. doi: 10.1007/s11207-011-9842-2. ADSCrossRefGoogle Scholar
  27. Schrijver, C.J., De Rosa, M.L., Metcalf, T.R., Barnes, G., Lites, B., Tarbell, T., et al.: 2008, Astrophys. J. 675, 1637. doi: 10.1086/527413. ADSCrossRefGoogle Scholar
  28. Snir, M., Otto, S., Huss-Lederman, S.: 1998, MPI – The Complete Reference, 2nd edn. MIT Press, Cambridge, 1. Google Scholar
  29. Sturrock, P.A.: 1994, Plasma Physics, an Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, Cambridge University Press, Cambridge, 206. CrossRefGoogle Scholar
  30. Sun, X., Liu, Y., Hoeksema, J.T., Hayashi, K., Zhao, X.: 2011, Solar Phys. 270, 9. doi: 10.1007/s11207-011-9751-4. ADSCrossRefGoogle Scholar
  31. Tóth, G., van der Holst, B., Huang, Z.: 2011, Astrophys. J. 732, 102. doi: 10.1088/0004-637X/732/2/102. ADSCrossRefGoogle Scholar
  32. Valori, G., Kliem, B., Keppens, R.: 2005, Astron. Astrophys. 433, 335. doi: 10.1051/0004-6361:20042008. ADSCrossRefzbMATHGoogle Scholar
  33. Wheatland, M.S.: 2007, Solar Phys. 245, 251. doi: 10.1007/s11207-007-9054-y. ADSCrossRefGoogle Scholar
  34. Wheatland, M.S., Régnier, S.: 2009, Astrophys. J. Lett. 700, L88. doi: 10.1088/0004-637X/700/2/L88. ADSCrossRefGoogle Scholar
  35. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. doi: 10.1086/309355. ADSCrossRefGoogle Scholar
  36. Wiegelmann, T.: 2004, Solar Phys. 219, 87. doi: 10.1023/B:SOLA.0000021799.39465.36. ADSCrossRefGoogle Scholar
  37. Wiegelmann, T.: 2007, Solar Phys. 240, 227. doi: 10.1007/s11207-006-0266-3. ADSCrossRefGoogle Scholar
  38. Wiegelmann, T.: 2008, J. Geophys. Res. 113, 3. doi: 10.1029/2007JA012432. Google Scholar
  39. Wiegelmann, T., Sakurai, T.: 2012, Living Rev. Solar Phys. 9, 5. ADSGoogle Scholar
  40. Wu, S.T., Sun, M.T., Chang, H.M., Hagyard, M.J., Gary, G.A.: 1990, Astrophys. J. 362, 698. doi: 10.1086/169307. ADSCrossRefGoogle Scholar
  41. Zwillinger, D.: 1989, Handbook of Differential Equations, 2nd edn. Academic Press, San Diego, 356. zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Sydney Institute for Astronomy, School of PhysicsThe University of SydneySydneyAustralia

Personalised recommendations