Solar Physics

, Volume 289, Issue 4, pp 1227–1237 | Cite as

Joint Measurements of Flare Flux Densities at 210 – 212 GHz by Two Different Radio Telescopes

  • J.-P. Raulin
  • G. Trottet
  • G. Giménez de Castro
  • T. Lüthi
  • P. Kaufmann


Multiple-beam observations of solar flares at submillimeter wavelengths need detection with at least four beams to derive the flux density \(\mbox{$F$} \) of the emitting source, its size, and centroid position. When this condition is not fulfilled, the assumptions on the location and/or size of the emitting source have to be made in order to compute \(\mbox{$F$}\). Otherwise, only a flux density range \(\mbox{$\Delta F$}\) can be estimated. We report on simultaneous flare observations at 212 and 210 GHz obtained by the Solar Submillimeter Telescope (SST) and the Bernese Multibeam Radiometer for Kosma (BEMRAK), respectively, during two solar events on 28 October 2003. For both events, BEMRAK utilized four beam information to calculate the source flux density F 210, its size and position. On the other hand, the SST observed the events with only one beam, at low solar elevation angles and during high atmospheric attenuation. Therefore, because of these poor observing conditions at 212 GHz, only a flux density range ΔF 212 could be estimated. The results show that ΔF 212 is within a factor of 2.5 of the flux density F 210. This factor can be significantly reduced (e.g. 1.4 for one of the studied events) by an appropriate choice of the 212 GHz source position using flare observations at other wavelengths. By adopting the position and size of the 210 GHz source measured by BEMRAK, the flux density at 212 GHz, F 212b, is comparable to F 210 within the uncertainties, as expected. Therefore our findings indicate that even during poor observing conditions, the SST can provide an acceptable estimate of the flux density at 212 GHz. This is a remarkable fact since the SST and BEMRAK use quite different procedures for calibration and flux density determination. We also show that the necessary assumptions made on the size of the emitting source at 212 GHz in order to estimate its flux density are not critical, and therefore do not affect the conclusions of previous studies at this frequency.


Instrumental effects Corona, radio emission Radio bursts, association with flares 



This work benefited from the data of the Radio Solar Telescope Network of the US Air Force Laboratory (RSTN) provided through NGDC. JPR thanks CNPq funding agency (Proc. 305655/2010-8 and 490444/2010-5). GT acknowledges CNPq and CNRS funding agencies (Proc. 490444/2010-5). CGGC thanks FAPESP (Proc. 2009/18386-7) and CNPq (Proc. 304204/2010-2).


  1. Costa, J.E.R., Silva, A.V.R., Lüdi, A., Magun, A.: 2002, Beam profile determination by tomography of solar scans. Astron. Astrophys. 387, 1153 – 1160. ADSCrossRefGoogle Scholar
  2. De la Luz, V., Lara, A., Raulin, J.P.: 2011, Synthetic spectra of radio, millimeter, sub-millimeter, and infrared regimes with non-local thermodynamic equilibrium approximation. Astrophys. J. 737, 1. ADSCrossRefGoogle Scholar
  3. Fleishman, G.D., Kontar, E.P.: 2010, Sub-THz radiation mechanisms in solar flares. Astrophys. J. Lett. 709, L127 – L132. ADSCrossRefGoogle Scholar
  4. Georges, C.B., Schaal, R., Costa, J., Kaufmann, P., Magun, A.: 1989, 50 GHz multi-beam receiver for radio astronomy. In: 2nd SBMO International Microwave and Optoelectronics Conference Proceedings, 447 – 449. Google Scholar
  5. Giménez de Castro, C.G., Raulin, J.P., Makhmutov, V.S., Kaufmann, P., Costa, J.E.R.: 1999, Instantaneous positions of microwave solar bursts: Properties and validity of the multiple beam observations. Astron. Astrophys. Suppl. 140, 373 – 382. ADSCrossRefGoogle Scholar
  6. Giménez de Castro, C.G., Trottet, G., Silva-Valio, A., Krucker, S., Costa, J.E.R., Kaufmann, P., Correia, E., Levato, H.: 2009, Submillimeter and X-ray observations of an X class flare. Astron. Astrophys. 507, 433 – 439. ADSCrossRefGoogle Scholar
  7. Kaufmann, P., Raulin, J.P.: 2006, Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves? Phys. Plasmas 13, 070701. ADSCrossRefGoogle Scholar
  8. Kaufmann, P., Costa, J.E.R., Giménez de Castro, C.G., Hadano, Y.R., Kingsley, J.S., Kingsley, K.K., et al.: 2001, The submillimeter-wave solar telescope. In: 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, 439 – 442. CrossRefGoogle Scholar
  9. Kaufmann, P., Raulin, J.P., de Castro, C.G.G., Levato, H., Gary, D.E., Costa, J.E.R., Marun, A., Pereyra, P., Silva, A.V.R., Correia, E.: 2004, A new solar burst spectral component emitting only in the terahertz range. Astrophys. J. Lett. 603, L121 – L124. ADSCrossRefGoogle Scholar
  10. Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., et al.: 2008, New telescopes for ground-based solar observations at submillimeter and mid-infrared. In: Stepp, L.M., Gilmozzi, R. (eds.) Ground-based and Airbone Telescopes II, Proc. SPIE 7012, 70120L. CrossRefGoogle Scholar
  11. Kaufmann, P., Trottet, G., Giménez de Castro, C.G., Raulin, J.P., Krucker, S., Shih, A.Y., Levato, H.: 2009, Sub-terahertz, microwaves and high energy emissions during the 6 December 2006 flare, at 18:40 UT. Solar Phys. 255, 131 – 142. ADSCrossRefGoogle Scholar
  12. Krucker, S., Giménez de Castro, C.G., Hudson, H.S., Trottet, G., Bastian, T.S., Hales, A.S., et al.: 2013, Solar flares at submillimeter wavelengths. Astron. Astrophys. Rev. 21, 58. ADSCrossRefGoogle Scholar
  13. Linsky, J.L., Ayres, T.: 1973, Stellar model chromospheres. I. On the temperature minima of F, G, and K stars. Astrophys. J. 180, 473 – 481. ADSCrossRefGoogle Scholar
  14. Loukitcheva, M., Solanki, S.K., Carlsson, M., Stein, R.F.: 2004, Millimeter observations and chromospheric dynamics. Astron. Astrophys. 419, 747 – 756. ADSCrossRefGoogle Scholar
  15. Lüthi, T., Lüdi, A., Magun, A.: 2004, Determination of the location and effective angular size of solar flares with a 210 GHz multibeam radiometer. Astron. Astrophys. 420, 361 – 370. ADSCrossRefGoogle Scholar
  16. Lüthi, T., Magun, A., Miller, M.: 2004, First observation of a solar X-class flare in the submillimeter range with KOSMA. Astron. Astrophys. 415, 1123 – 1132. ADSCrossRefGoogle Scholar
  17. Melo, A.M., Kaufmann, P., Giménez de Castro, C.G., Raulin, J.P., Levato, H., Marun, A., Giuliani, J.L., Pereyra, P.: 2005, Submillimeter-wave atmospheric transmission at El Leoncito, Argentina Andes. IEEE Trans. Antennas Propag. 53, 1528 – 1534. ADSCrossRefGoogle Scholar
  18. Penzias, A.A., Burrus, C.A.: 1973, Millimeter-wavelength radio-astronomy techniques. Annu. Rev. Astron. Astrophys. 11, 51 – 72. ADSCrossRefGoogle Scholar
  19. Raulin, J.P., Makhmutov, V.S., Kaufmann, P., Pacini, A.A., Lüthi, T., Hudson, H.S., Gary, D.E.: 2004, Analysis of the impulsive phase of a solar flare at submillimeter wavelengths. Solar Phys. 223, 181 – 199. ADSCrossRefGoogle Scholar
  20. Silva, A.V.R., Laganá, T.F., Gimenez Castro, C.G., Kaufmann, P., Costa, J.E.R., Levato, H., Rovira, M.: 2005, Diffuse component spectra of solar active regions at submillimeter wavelengths. Solar Phys. 227, 265 – 281. ADSCrossRefGoogle Scholar
  21. Silva, A.V.R., Share, G.H., Murphy, R.J., Costa, J.E.R., de Castro, C.G.G., Raulin, J.P., Kaufmann, P.: 2007, Evidence that synchrotron emission from nonthermal electrons produces the increasing submillimeter spectral component in solar flares. Solar Phys. 245, 311 – 326. ADSCrossRefGoogle Scholar
  22. Trottet, G., Raulin, J.P., Kaufmann, P., Siarkowski, M., Klein, K.L., Gary, D.E.: 2002, First detection of the impulsive and extended phases of a solar radio burst above 200 GHz. Astron. Astrophys. 381, 694 – 702. ADSCrossRefGoogle Scholar
  23. Trottet, G., Krucker, S., Lüthi, T., Magun, A.: 2008, Radio submillimeter and γ-ray observations of the 2003 October 28 solar flare. Astrophys. J. 678, 509 – 514. ADSCrossRefGoogle Scholar
  24. Trottet, G., Raulin, J.P., Giménez de Castro, G., Lüthi, T., Caspi, A., Mandrini, C.H., Luoni, M.L., Kaufmann, P.: 2011, Origin of the submillimeter radio emission during the time-extended phase of a solar flare. Solar Phys. 273, 339 – 361. ADSCrossRefGoogle Scholar
  25. Ulich, B.L.: 1980, Improved correction for millimeter-wavelength atmospheric attenuation. Astrophys. Lett. 21, 21 – 28. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J.-P. Raulin
    • 1
  • G. Trottet
    • 2
  • G. Giménez de Castro
    • 1
  • T. Lüthi
    • 3
  • P. Kaufmann
    • 1
  1. 1.CRAAM Universidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.Observatoire de Paris, LESIA-CNRS UMR 8109, Univ. P & M Curie and Paris-DiderotObservatoire de MeudonMeudonFrance
  3. 3.Hexagon MetrologyLeica Geosystems AGUnterenfeldenSwitzerland

Personalised recommendations