Skip to main content
Log in

Detectability of Large-Scale Solar Subsurface Flows

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The accuracy of helioseismic measurement is limited by the stochastic nature of solar oscillations. In this article I use a Gaussian statistical model of the global seismic wave field of the Sun to investigate the noise limitations of direct-modeling analysis of convection-zone-scale flows. The theoretical analysis of noise is based on hypothetical data that cover the entire photosphere, including the portions invisible from the Earth. Noise estimates are derived for measurements of the flow-dependent couplings of global-oscillation modes and for combinations of coupling measurements that isolate vector-spherical-harmonic components of the flow velocity. For current helioseismic observations, which sample only a fraction of the photosphere, the inferred detection limits are best regarded as optimistic limits. The flow-velocity fields considered in this work are assumed to be decomposable into vector-spherical-harmonic functions of degree less than five. The problem of measuring the general velocity field is shown to be similar enough to the well-studied problem of measuring differential rotation to permit rough estimates of flow-detection thresholds to be gleaned from past helioseismic analysis. I estimate that, with existing and anticipated helioseismic datasets, large-scale flow-velocity amplitudes of a few tens of \({\rm m\,s^{-1}}\) should be detectable near the base of the convection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braun, D.C., Birch, A.C.: 2008, Prospects for the detection of the deep solar meridional circulation. Astrophys. J. Lett. 689, L161 – L165. doi: 10.1086/595884 .

    Article  ADS  Google Scholar 

  • Braun, D.C., Fan, Y.: 1998, Helioseismic measurements of the subsurface meridional flow. Astrophys. J. Lett. 508, L105 – L108. doi: 10.1086/311727 .

    Article  ADS  Google Scholar 

  • Braun, D.C., Birch, A.C., Benson, D., Stein, R.F., Nordlund, Å.: 2007, Helioseismic holography of simulated solar convection and prospects for the detection of small-scale subsurface flows. Astrophys. J. 669, 1395 – 1405. doi: 10.1086/521782 .

    Article  ADS  Google Scholar 

  • Chatterjee, P., Antia, H.M.: 2009, Solar flows and their effect on frequencies of acoustic modes. Astrophys. J. 707, 208 – 217. doi: 10.1088/0004-637X/707/1/208 .

    Article  ADS  Google Scholar 

  • Chou, D.-Y., Ladenkov, O.: 2005, Evolution of solar subsurface meridional flows in the declining phase of cycle 23. Astrophys. J. 630, 1206 – 1212. doi: 10.1086/432372 .

    Article  ADS  Google Scholar 

  • De Rosa, M.L., Gilman, P.A., Toomre, J.: 2002, Solar multiscale convection and rotation gradients studied in shallow spherical shells. Astrophys. J. 581, 1356 – 1374. doi: 10.1086/344295 .

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A.: 2006, Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498 – 514. doi: 10.1086/506314 .

    Article  ADS  Google Scholar 

  • Durney, B.R.: 2000, Meridional motions and the angular momentum balance in the solar convection zone. Astrophys. J. 528, 486 – 492. doi: 10.1086/308166 .

    Article  ADS  Google Scholar 

  • Edmonds, A.R.: 1960, Angular Momentum in Quantum Mechanics, 2nd edn., Princeton University Press, Princeton.

    Google Scholar 

  • Featherstone, N.A., Haber, D.A., Hindman, B.W., Toomre, J.: 2006, Helioseismic probing of giant-cell convection. In: Fletcher, K. (ed.) Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun SP-624, ESA, Noordwijk.

    Google Scholar 

  • Giles, P.M.: 2000, Time-distance measurements of large-scale flows in the solar convection zone, Ph.D. thesis, Stanford University.

  • Giles, P.M., Duvall, T.L., Scherrer, P.H., Bogart, R.S.: 1997, A subsurface flow of material from the Sun’s equator to its poles. Nature 390, 52 – 54. doi: 10.1038/36294 .

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2002, Time–distance helioseismology: the forward problem for random distributed sources. Astrophys. J. 571, 966 – 986. doi: 10.1086/340015 .

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2004, Time–distance helioseismology: noise estimation. Astrophys. J. 614, 472 – 489. doi: 10.1086/423367 .

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2005, Local helioseismology. Living Rev. Solar Phys. 2, 6. doi: 10.12942/lrsp-2005-6 .

    ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2012, Helioseismology challenges models of solar convection. Proc. Natl. Acad. Sci. USA 109, 11896 – 11897. doi: 10.1073/pnas.1208875109 .

    Article  ADS  Google Scholar 

  • González Hernández, I., Patrón, J., Bogart, R.S., The SOI Ring Diagram Team: 1999, Meridional flows from ring diagram analysis. Astrophys. J. Lett. 510, L153 – L156. doi: 10.1086/311811 .

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855 – 864. doi: 10.1086/339631 .

    Article  ADS  Google Scholar 

  • Hanasoge, S., Duvall, T.L. Jr, Sreenivasan, K.R.: 2012, Anomalously weak solar convection. Proc. Natl. Acad. Sci. USA 109, 11928 – 11932. doi: 10.1073/pnas.1206570109

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Beck, J.G., Bogart, R.S., Bachmann, K.T., Khatri, G., Petitto, J.M., Han, S., Raymond, J.: 2000, The photospheric convection spectrum. Solar Phys. 193, 299 – 312.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. doi: 10.12942/lrsp-2009-1 .

    ADS  Google Scholar 

  • Howe, R., Komm, R.W., Hill, F.: 2002, Localizing the solar cycle frequency shifts in global p-modes. Astrophys. J. 580, 1172 – 1187. doi: 10.1086/343892 .

    Article  ADS  Google Scholar 

  • Hughes, S.J., Thompson, M.J.: 2003, Time–distance helioseismology of subsurface flows. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: the Present and Future SP-517, ESA, Noordwijk, 307 – 310.

    Google Scholar 

  • Kitchatinov, L.L., Rüdiger, G.: 1999, Differential rotation models for late-type dwarfs and giants. Astron. Astrophys. 344, 911 – 917.

    ADS  Google Scholar 

  • Kosovichev, A.G., Duvall, T.L. Jr., Scherrer, P.H.: 2000, Time–distance inversion methods and results (Invited Review). Solar Phys. 192, 159 – 176. doi: 10.1023/A:1005251208431 .

    Article  ADS  Google Scholar 

  • Küker, M., Rüdiger, G.: 2005, Differential rotation on the lower main sequence. Astron. Nachr. 326, 265 – 268. doi: 10.1002/asna.200410387 .

    Article  ADS  Google Scholar 

  • Kumar, P., Duvall, T.L. Jr., Harvey, J.W., Jefferies, S.M., Pomerantz, M.A., Thompson, M.J.: 1990, What are the observed high-frequency solar acoustic modes? In: Osaki, Y., Shibahashi, H. (eds.) Progress of Seismology of the Sun and Stars, Lecture Notes in Physics 367, Springer, Berlin, 87. doi: 10.1007/3-540-53091-6-68 .

    Chapter  Google Scholar 

  • Lavely, E.M., Ritzwoller, M.H.: 1992, The effect of global-scale, steady-state convection and elastic–gravitational asphericities on helioseismic oscillations. Phil. Trans. Roy. Soc. London Ser. A 339, 431 – 496 [LR92].

    Article  ADS  Google Scholar 

  • Lavely, E.M., Ritzwoller, M.H.: 1993, Average effects of large-scale convection on helioseismic line widths and frequencies. Astrophys. J. 403, 810 – 832. doi: 10.1086/172252 .

    Article  ADS  Google Scholar 

  • Libbrecht, K.G.: 1992, On the ultimate accuracy of solar oscillation frequency measurements. Astrophys. J. 387, 712 – 714. doi: 10.1086/171119 .

    Article  ADS  Google Scholar 

  • Miesch, M.S.: 2005, Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys. 2, 1. doi: 10.12942/lrsp-2005-1 .

    ADS  Google Scholar 

  • Miesch, M.S.: 2007, Differential rotation and meridional circulation in global models of solar convection. Astron. Nachr. 328, 998 – 1001. doi: 10.1002/asna.200710841 .

    Article  ADS  MATH  Google Scholar 

  • Roth, M., Stix, M.: 2008, Meridional circulation and global solar oscillations. Solar Phys. 251, 77 – 89. doi: 10.1007/s11207-008-9232-6 .

    Article  ADS  Google Scholar 

  • Schad, A., Timmer, J., Roth, M.: 2011, A unified approach to the helioseismic inversion problem of the solar meridional flow from global oscillations. Astrophys. J. 734, 97. doi: 10.1088/0004-637X/734/2/97 .

    Article  ADS  Google Scholar 

  • Schou, J.: 1992, On the analysis of helioseismic data, Ph.D. thesis, Aarhus University.

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390 – 417. doi: 10.1086/306146 .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr.: 2005, Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev. Solar Phys. 2, 5. doi: 10.12942/lrsp-2005-5 .

    ADS  Google Scholar 

  • Stix, M.: 2004, The Sun: An Introduction, Astron. and Astrophys. Lib., Springer, Berlin.

    Google Scholar 

  • Thompson, M.J., Christensen-Dalsgaard, J., Miesch, M.S., Toomre, J.: 2003, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599 – 643. doi: 10.1146/annurev.astro.41.011802.094848 .

    Article  ADS  Google Scholar 

  • Vorontsov, S.V.: 2011, Effects of differential rotation and meridional circulation in solar oscillations of high degree l. Mon. Not. Roy. Astron. Soc. 418, 1146 – 1155. doi: 10.1111/j.1365-2966.2011.19564.x .

    Article  ADS  Google Scholar 

  • Woch, J., Gizon, L.: 2007, The Solar Orbiter mission and its prospects for helioseismology. Astron. Nachr. 328, 362. doi: 10.1002/asna.200710743 .

    Article  ADS  Google Scholar 

  • Wolfram Research, Inc.: 2012, Mathematica, Version 9.0.

    Google Scholar 

  • Woodard, M.F.: 2002, Solar subsurface flow inferred directly from frequency–wavenumber correlations in the seismic velocity field. Astrophys. J. 565, 634 – 639. doi: 10.1086/324546 .

    Article  ADS  Google Scholar 

  • Woodard, M.F.: 2006, The seismic correlation signature of moderate-scale flow in the Sun. Astrophys. J. 649, 1140 – 1154. doi: 10.1086/506927 .

    Article  ADS  Google Scholar 

  • Woodard, M.F.: 2007, Probing supergranular flow in the solar interior. Astrophys. J. 668, 1189 – 1195. doi: 10.1086/521391 .

    Article  ADS  Google Scholar 

  • Woodard, M.F.: 2009a, Helioseismic measurement of large-scale solar flows. In: Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., Hill, F. (eds.) Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21 CS-416, Astron. Soc. Pac., San Francisco, 15 [W09].

    Google Scholar 

  • Woodard, M.F.: 2009b, Seismic detection of solar mesogranular-scale flow. Astrophys. J. Lett. 706, L62 – L65. doi: 10.1088/0004-637X/706/1/L62 .

    Article  ADS  Google Scholar 

  • Woodard, M., Schou, J., Birch, A.C., Larson, T.P.: 2012, Global-oscillation eigenfunction measurements of solar meridional flow. Solar Phys. 179. doi: 10.1007/s11207-012-0075-9 [W12].

  • Zhao, J., Kosovichev, A.G.: 2004, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time–distance helioseismology. Astrophys. J. 603, 776 – 784. doi: 10.1086/381489 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Jesper Schou and Aaron Birch for useful general discussions and Ashley Crouch for performing pivotal calculations. I also thank Jesper Schou and the anonymous referee for suggesting improvements to the manuscript. This research was supported by NASA contract NNH09CF93C to NWRA/CoRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Woodard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodard, M. Detectability of Large-Scale Solar Subsurface Flows. Sol Phys 289, 1085–1100 (2014). https://doi.org/10.1007/s11207-013-0386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0386-5

Keywords

Navigation