Skip to main content
Log in

Cycle 23 Variation in Solar Flare Productivity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The NOAA listings of solar flares in cycles 21 – 24, including the GOES soft X-ray magnitudes, enable a simple determination of the number of flares each flaring active region produces over its lifetime. We have studied this measure of flare productivity over the interval 1975 – 2012. The annual averages of flare productivity remained approximately constant during cycles 21 and 22, at about two reported M- or X-flares per region, but then increased significantly in the declining phase of cycle 23 (the years 2004 – 2005). We have confirmed this by using the independent RHESSI flare catalog to check the NOAA events listings where possible. We note that this measure of solar activity does not correlate with the solar cycle. The anomalous peak in flare productivity immediately preceded the long solar minimum between cycles 23 and 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141 – 1149. doi: 10.1086/431732 .

    Article  ADS  Google Scholar 

  • Albregtsen, F., Maltby, P.: 1981, Solar cycle variation of sunspot intensity. Solar Phys. 71, 269 – 283. doi: 10.1007/BF00167551 .

    Article  ADS  Google Scholar 

  • Dalla, S., Fletcher, L., Walton, N.A.: 2007, Flare productivity of newly-emerged paired and isolated solar active regions. Astron. Astrophys. 468, 1103 – 1108. doi: 10.1051/0004-6361:20077177 .

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497 – 500. doi: 10.1023/A:1005038224881 .

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2013, Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237 – 252. doi: 10.1007/s11214-011-9780-1 .

    Article  ADS  Google Scholar 

  • Gaizauskas, V.: 1982, The relation of solar flares to the evolution and proper motions of magnetic fields. Adv. Space Res. 2, 11 – 30. doi: 10.1016/0273-1177(82)90175-2 .

    Article  ADS  Google Scholar 

  • Heyvaerts, J., Priest, E.R.: 1984, Coronal heating by reconnection in DC current systems – A theory based on Taylor’s hypothesis. Astron. Astrophys. 137, 63 – 78.

    ADS  Google Scholar 

  • Jing, J., Tan, C., Yuan, Y., Wang, B., Wiegelmann, T., Xu, Y., Wang, H.: 2010, Free magnetic energy and flare productivity of active regions. Astrophys. J. 713, 440 – 449. doi: 10.1088/0004-637X/713/1/440 .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0 .

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., Mchedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3 – 32. doi: 10.1023/A:1022428818870 .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1996, Solar activity and the corona. Solar Phys. 167, 217 – 265. doi: 10.1007/BF00146338 .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Webb, D.F. (eds.): 2012, Comparative magnetic minima: characterizing quiet times in the Sun and stars, IAU Symp. 286.

  • Mewaldt, R.A., Davis, A.J., Lave, K.A., Leske, R.A., Stone, E.C., Wiedenbeck, M.E., Binns, W.R., Christian, E.R., Cummings, A.C., de Nolfo, G.A., Israel, M.H., Labrador, A.W., von Rosenvinge, T.T.: 2010, Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, L1 – L6. doi: 10.1088/2041-8205/723/1/L1 .

    Article  ADS  Google Scholar 

  • Penn, M.J., Livingston, W.: 2006, Temporal changes in sunspot umbral magnetic fields and temperatures. Astrophys. J. Lett. 649, L45 – L48. doi: 10.1086/508345 .

    Article  ADS  Google Scholar 

  • Rust, D.M.: 1994, Spawning and shedding helical magnetic fields in the solar atmosphere. Geophys. Res. Lett. 21, 241 – 244. doi: 10.1029/94GL00003 .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117 – L120. doi: 10.1086/511857 .

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths – The temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, 829 – 838. doi: 10.1029/JD092iD01p00829 .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97 – L100. doi: 10.1086/462412 .

    Article  ADS  Google Scholar 

  • Watson, F.T., Fletcher, L., Marshall, S.: 2011, Evolution of sunspot properties during solar cycle 23. Astron. Astrophys. 533, A14. doi: 10.1051/0004-6361/201116655 .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2001, Rates of flaring in individual active regions. Solar Phys. 203, 87 – 106.

    Article  ADS  Google Scholar 

  • White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements. Solar Phys. 227, 231 – 248. doi: 10.1007/s11207-005-2445-z .

    Article  ADS  Google Scholar 

  • Zirin, H., Liggett, M.A.: 1987, Delta spots and great flares. Solar Phys. 113, 267 – 281. doi: 10.1007/BF00147707 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors Hudson and McTiernan acknowledge support from NASA under Contract NAS5–98033 for RHESSI. Author Fletcher was supported by STFC rolling grant ST/I001808/1 and by the EC-funded FP7 project HESPE (FP7-2010-SPACE-1–263086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Hudson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, H., Fletcher, L. & McTiernan, J. Cycle 23 Variation in Solar Flare Productivity. Sol Phys 289, 1341–1347 (2014). https://doi.org/10.1007/s11207-013-0384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0384-7

Keywords

Navigation