Skip to main content

The 22-Year Hale Cycle in Cosmic Ray Flux – Evidence for Direct Heliospheric Modulation

Abstract

The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA<0) polarities. This results in the onset of the peak cosmic-ray flux at Earth occurring earlier during qA>0 cycles than for qA<0 cycles, which in turn causes the peak to be more dome-shaped for qA>0 and more sharply peaked for qA<0. In this study, we demonstrate that properties of the large-scale heliospheric magnetic field are different during the declining phase of the qA<0 and qA>0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 – 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  • Ahluwalia, H.S., Ygbuhay, R.C.: 2010, Status of Galactic Cosmic Ray Recovery from Sunspot Cycle 23 Modulation CP-1216, AIP, New York, 699 – 702.

    Google Scholar 

  • Alanko-Huotari, K., Usoskin, I.G., Mursala, K., Kovaltsov, G.A.: 2007, Cyclic variations of the heliospheric tilt angle and cosmic ray modulation. Adv. Space Res. 40, 1064 – 1069.

    ADS  Article  Google Scholar 

  • Babcock, H.D.: 1959, The Sun’s polar magnetic field. Astrophys. J. 130, 364 – 366. ADS: 1959ApJ...130..364B , doi: 10.1086/146726 .

    ADS  Article  Google Scholar 

  • Babcock, H.W., Babcock, H.D.: 1955, The Sun’s magnetic field 1952 – 1954. Astrophys. J. 121, 349.

    ADS  Article  Google Scholar 

  • Beer, J., Vonmoos, M., Muscheler, R.: 2006, Solar variability over the past several millennia. Space Sci. Rev. 125, 67 – 79.

    ADS  Article  Google Scholar 

  • Berdyugina, S.V., Usoskin, I.G.: 2003, Active longitudes in sunspot activity: century scale persistence. Astron. Astrophys. 405, 1121 – 1128.

    ADS  Article  Google Scholar 

  • Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P.A., Humble, J.E., Pyle, R.: 2004, Latitudinal survey observations of neutron monitor multiplicity. J. Geophys. Res. 109. doi: 10.1029/2004JA010493 .

  • Chernosky, E.J.: 1966, Double sunspot-cycle variation in terrestrial magnetic activity. J. Geophys. Res. 71, 965.

    ADS  Article  Google Scholar 

  • Cliver, E.W., Ling, A.G.: 2001, 22 year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. 551, 189 – 192.

    ADS  Article  Google Scholar 

  • Cliver, E.W., Richardson, I.G., Ling, A.G.: 2011, Solar drivers of 11-year and long-term cosmic ray modulation. Space Sci. Rev. doi: 10.1007/s11214-011-9746-3 .

    Google Scholar 

  • Ellis, W.: 1899, On the relation between magnetic disturbances and the period of solar spot frequency. Mon. Not. Roy. Astron. Soc. 60, 142 – 157.

    ADS  Google Scholar 

  • Ferreira, S.E.S., Potgeiter, M.S.: 2004, Long-term cosmic-ray modulation in the heliosphere. Astrophys. J. 603, 744 – 752.

    ADS  Article  Google Scholar 

  • Forbush, S.E.: 1954, Worldwide cosmic ray variations, 1937 – 1952. J. Geophys. Res. 59, 525 – 542.

    ADS  Article  Google Scholar 

  • Gil, A., Alanis, M.V.: 2008, On the energy spectrum of the 27-day variation of the galactic cosmic ray intensity. In: Proc. 30th Internat. Cosmic Ray (ICRC07) Conf. 1 (SH), 601 – 604.

    Google Scholar 

  • Hale, G.E., Nicholson, S.B.: 1925, The law of Sun-spot polarity. Astrophys. J. 62, 270 – 300.

    ADS  Article  Google Scholar 

  • Hapgood, M.A.: 2010, Towards a scientific understanding of the risk from extreme space weather. Adv. Space Res. 47, 2059 – 2072.

    ADS  Article  Google Scholar 

  • Hapgood, M.A., Bowe, G., Lockwood, M., Willis, D.M., Tulunay, Y.: 1991, Variability of the interplanetary magnetic field at 1 A.U. over 24 years: 1963 – 1986. Planet. Space Sci. 39, 411 – 423.

    ADS  Article  Google Scholar 

  • Harvey, K.L.: 1996, Large scale patterns of magnetic activity and the solar cycle. Bull. Am. Astron. Soc. 28, 867.

    ADS  Google Scholar 

  • Hathaway, D.H.: 2012, The solar cycle. Living Rev. Solar Phys. 7, 1. doi: 10.12942/lrsp-2010-1 .

    ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177 – 190. ADS: 1994SoPh..151..177H , doi: 10.1007/BF00654090 .

    ADS  Article  Google Scholar 

  • Jokipii, J.R., Thomas, B.: 1981, Effects of drift on the transport of cosmic rays IV. Modulation by a wavy interplanetary current sheet. Astrophys. J. 243, 1115 – 1122.

    ADS  Article  Google Scholar 

  • Jokipii, J.R., Levy, E.H., Hubbard, W.B.: 1977, Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 213, 861 – 868.

    ADS  Article  Google Scholar 

  • King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110. doi: 10.1029/2004JA010649 .

  • Lockwood, M.: 2003, Twenty-three cycles of changing open solar magnetic flux. J. Geophys, Res. 108. doi: 10.1029/2002JA009431 .

  • Lockwood, M.: 2010, Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. Roy. Soc. A 466, 303 – 329.

    ADS  Article  Google Scholar 

  • Lockwood, M., Owens, M.J.: 2011, Centennial changes in the heliospheric magnetic field and open solar flux: the consensus view from geomagnetic data and cosmogenic isotopes and its implications. J. Geophys, Res. 116. doi: 10.1029/2010JA016220 .

  • Lockwood, M., Rouillard, A.P., Finch, I.D.: 2009, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937 – 944.

    ADS  Article  Google Scholar 

  • Lockwood, M., Owens, M.J., Barnard, L., Davis, C.J., Thomas, S.R.: 2012, What is the Sun up to? Astron. Geophys. 53, 3.9 – 3.15.

    Google Scholar 

  • McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F.: 2004, A phenomenological study of the long-term cosmic ray modulation, 850 – 1958 AD. J. Geophys, Res. 109. doi: 10.1029/2004JA010685 .

  • Mewaldt, R., Davis, A., Lave, K., Leske, R., Stone, E., Wiedenbeck, M., Binns, W., Christian, E., Cummings, A., De Nolfo, G., Israel, M., Labrador, A., Von Rosenvinge, T.: 2010, Record-setting cosmic ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, L1 – L6.

    ADS  Article  Google Scholar 

  • Owens, M.J., Crooker, N.U., Lockwood, M.: 2011, How is open solar flux lost over the solar cycle? J. Geophys. Res. 116. doi: 10.1029/2011JA016039 .

  • Owens, M.J., Lockwood, M., Barnard, L., Davis, C.J.: 2011, Solar cycle 24: implications for energetic particles and long-term space climate change. Geophys. Res. Lett. 38, 19106.

    ADS  Article  Google Scholar 

  • Parker, E.N.: 1965, The passage of energetically charged particles through interplanetary space. Planet. Space Sci. 13, 9 – 49.

    ADS  Article  Google Scholar 

  • Potgieter, M.S.: 1995, The time-dependent transport of cosmic rays in the heliosphere. Astrophys. Space Sci. 116. doi: 10.1029/2010JA016220 .

  • Richardson, I.G., Cane, H.V., Wibberenz, G.: 1999, A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima. J. Geophys. Res. 104, 12549.

    ADS  Article  Google Scholar 

  • Rouillard, A., Lockwood, M.: 2004, Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding. Ann. Geophys. 22, 4381 – 4395.

    ADS  Article  Google Scholar 

  • Rouillard, A., Lockwood, M.: 2007, The latitudinal effect of co-rotating interaction regions on galactic cosmic rays. Solar Phys. 245, 191 – 206. ADS: 2007SoPh..245..191R , doi: 10.1007/s11207-007-9019-1 .

    ADS  Article  Google Scholar 

  • Ruzmaikin, A.A., Feynman, J., Neugebauer, M., Smith, E.J.: 2000, On the nature and persistence of preferred longitudes of solar activity. Bull. Am. Astron. Soc. 32, 835.

    ADS  Google Scholar 

  • Schwabe, M.: 1843, Die Sonne. Von Herrn Hofrath Schwabe. Astron. Nachr. 20, 283.

    ADS  Article  Google Scholar 

  • Smith, E.J.: 1990, The heliospheric current sheet and modulation of galactic cosmic rays. J. Geophys. Res. 95, 18731 – 18743.

    ADS  Article  Google Scholar 

  • Smith, E.J., Thomas, E.J.: 1986, Latitudinal extent of the heliospheric current sheet and modulation of galactic cosmic rays. J. Geophys. Res. 91, 2933 – 2942.

    ADS  Article  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schuessler, M., Beer, J.: 2004, Unusual acticity of the Sun during recent decades compared to the previous 11 000 years. Nature 431, 1084 – 1087.

    ADS  Article  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Cycle 24: smallest in 100 years? Geophys. Res. Lett. 32. doi: 10.1029/2004GL021664 .

  • Usoskin, I.G.: 2008, A history of solar activity over millennia. Living Rev. Solar Phys. 5, 1 – 60. doi: 10.12942/lrsp-2008-3 .

    ADS  Article  Google Scholar 

  • Usoskin, I.G., Bazilevskaya, G.A., Kovaltsov, G.A.: 2011, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and Ionization chambers. J. Geophys. Res. 116. doi: 10.1029/2010JA016105 .

  • Van Allen, J.A.: 2000, On the modulation of galactic cosmic ray intensity during solar activity cycles 19, 20, 21, 22 and early 23. Geophys. Res. Lett. 27, 2453 – 2456.

    ADS  Article  Google Scholar 

  • Waldmeier, M.: 1935, Neue Eigenschaften der Sonnenfleckenkurve. Astron. Mitt. Zurich 14, 105 – 130.

    ADS  Google Scholar 

  • Wang, Y.M., Sheeley Jr., N.R., Rouillard, A.P.: 2006, Role of the Sun’s nonaxisymmetric open flux in cosmic ray modulation. Astrophys. J. 644, 638.

    ADS  Article  Google Scholar 

  • Webber, W.R., Lockwood, J.A.: 1988, Characteristics of the 22-year modulation of cosmic rays as seen by neutron monitors. J. Geophys. Res. 93, 8735 – 8740.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Space Physics Data Facility (SPDF) of NASA’s Goddard Space Flight Centre for combining the data into the OMNI 2 data set, which was obtained via the GSFC/SPDF OMNIWeb interface at omniweb.gsfc.nasa.gov and to the Marshall Space Flight Centre for the Sunspot Number data obtained from MSFC at solarscience.msfc.nasa.gov/greenwch.shtml . We also thank the Bartol Research Institute of the University of Delaware for the neutron-monitor data from McMurdo, which is supported by NSF grant ATM-0527878 and J.T. Hoeksema of Stanford University for WSO magnetograms. The work of SRT is supported by a studentship from the UK’s Natural Environment Research Council (NERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Thomas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, S.R., Owens, M.J. & Lockwood, M. The 22-Year Hale Cycle in Cosmic Ray Flux – Evidence for Direct Heliospheric Modulation. Sol Phys 289, 407–421 (2014). https://doi.org/10.1007/s11207-013-0341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0341-5

Keywords

  • 22-year cycle
  • Cosmic rays
  • Heliospheric current sheet
  • Solar variability
  • Polarity reversal