Skip to main content
Log in

Changes in Quasi-periodic Variations of Solar Photospheric Fields: Precursor to the Deep Solar Minimum in Cycle 23?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Possible precursor signatures in the quasi-periodic variations of solar photospheric fields were investigated in the build-up to one of the deepest solar minima experienced in the past 100 years. This unusual and deep solar minimum occurred between Solar Cycles 23 and 24. We used both wavelet and Fourier analysis to study the changes in the quasi-periodic variations of solar photospheric fields. Photospheric fields were derived using ground-based synoptic magnetograms spanning the period 1975.14 to 2009.86 and covering Solar Cycles 21, 22, and 23. A hemispheric asymmetry in the periodicities of the photospheric fields was seen only at latitudes above ± 45 when the data were divided into two parts based on a wavelet analysis: one prior to 1996 and the other after 1996. Furthermore, the hemispheric asymmetry was observed to be confined to the latitude range of 45 to 60. This can be attributed to the variations in polar surges that primarily depend on both the emergence of surface magnetic flux and varying solar-surface flows. The observed asymmetry along with the fact that both solar fields above ± 45 and micro-turbulence levels in the inner-heliosphere have been decreasing since the early- to mid-nineties (Janardhan et al. in Geophys. Res. Lett. 382, 20108, 2011) suggest that around this time active changes occurred in the solar dynamo that governs the underlying basic processes in the Sun. These changes in turn probably initiated the build-up to the very deep solar minimum at the end of Cycle 23. The decline in fields above ± 45, for well over a solar cycle, would imply that weak polar fields have been generated in the past two successive solar cycles, viz. Cycles 22 and 23. A continuation of this declining trend beyond 22 years, if it occurs, will have serious implications for our current understanding of the solar dynamo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ananthakrishnan, S., Balasubramanian, V., Janardhan, P.: 1995, Latitudinal variation of solar wind velocity. Space Sci. Rev. 72, 229 – 232. doi: 10.1007/BF00768784 .

    Article  ADS  Google Scholar 

  • Ananthakrishnan, S., Coles, W.A., Kaufman, J.J.: 1980, Microturbulence in solar wind streams. J. Geophys. Res. 85, 6025 – 6030. doi: 10.1029/JA085iA11p06025 .

    Article  ADS  Google Scholar 

  • Bai, T.: 1987, Periodicities of the flare occurrence rate in solar cycle 19. Astrophys. J. Lett. 318, L85 – L91. doi: 10.1086/184943 .

    Article  ADS  Google Scholar 

  • Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of cycles 19 – 23. Astrophys. J. 591, 406 – 415. doi: 10.1086/375295 .

    Article  ADS  Google Scholar 

  • Basu, S., Broomhall, A.-M., Chaplin, W.J., Elsworth, Y.: 2012, Thinning of the Sun’s magnetic layer: the peculiar solar minimum could have been predicted. Astrophys. J. 758, 43. doi: 10.1088/0004-637X/758/1/43 .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98(13), 131103. doi: 10.1103/PhysRevLett.98.131103 .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during solar cycle 23. Solar Phys. 270, 365 – 383. doi: 10.1007/s11207-011-9738-1 .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Khan, M., Ray, P.C.: 2009, Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. Roy. Astron. Soc. 392, 1159 – 1180. doi: 10.1111/j.1365-2966.2008.14117.x .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Khan, M., Ray, P.C.: 2010, Short-term periodicities in sunspot activities during the descending phase of solar cycle 23. Solar Phys. 261, 173 – 191. doi: 10.1007/s11207-009-9478-7 .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Ray, P.C.: 2006, Periodicities of solar electron flare occurrence: analysis of cycles 21 – 23. Mon. Not. Roy. Astron. Soc. 373, 1577 – 1589. doi: 10.1111/j.1365-2966.2006.11120.x .

    Article  ADS  Google Scholar 

  • Dikpati, M.: 2011, Comparison of the past two solar minima from the perspective of the interior dynamics and dynamo of the Sun. Space Sci. Rev. 143. doi: 10.1007/s11214-011-9790-z .

  • Dikpati, M., Gilman, P.A., de Toma, G., Ulrich, R.K.: 2010, Impact of changes in the Sun’s conveyor-belt on recent solar cycles. Geophys. Res. Lett. 37, 14107. doi: 10.1029/2010GL044143 .

    ADS  Google Scholar 

  • Droege, W., Gibbs, K., Grunsfeld, J.M., Meyer, P., Newport, B.J., Evenson, P., Moses, D.: 1990, A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. Suppl. 73, 279 – 283. doi: 10.1086/191463 .

    Article  ADS  Google Scholar 

  • D’Silva, S., Choudhuri, A.R.: 1993, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621.

    ADS  Google Scholar 

  • Fisher, R.A.: 1929, Tests of significance in harmonic analysis. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 125, 54 – 59.

    Article  ADS  MATH  Google Scholar 

  • Forrest, D.J., Chupp, E.L., Ryan, J.M., Cherry, M.L., Gleske, I.U., Reppin, C., Pinkau, K., Rieger, E., Kanbach, G., Kinzer, R.L.: 1980, The gamma ray spectrometer for the Solar Maximum Mission. Solar Phys. 65, 15 – 23. doi: 10.1007/BF00151381 .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Rightmire, L.: 2010, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350. doi: 10.1126/science.1181990 .

    Article  ADS  Google Scholar 

  • Howard, R.: 1974, Studies of solar magnetic fields. II – The magnetic fluxes. Solar Phys. 38, 59 – 67. doi: 10.1007/BF00161823 .

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287, 2456 – 2460. doi: 10.1126/science.287.5462.2456 .

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Gosain, S.: 2010, Solar polar fields during cycles 21 – 23: correlation with meridional flows. Solar Phys. 267, 267 – 277. doi: 10.1007/s11207-010-9653-x .

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2011, The prelude to the deep minimum between solar cycles 23 and 24: interplanetary scintillation signatures in the inner heliosphere. Geophys. Res. Lett. 382, 20108. doi: 10.1029/2011GL049227 .

    Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G.: 2011, Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Phys. 69. doi: 10.1007/s11207-011-9737-2 .

  • Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381, 1527 – 1542. doi: 10.1111/j.1365-2966.2007.12267.x .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schmitt, D., Schussler, M.: 2011, Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev. 136. doi: 10.1007/s11214-011-9783-y .

  • Kile, J.N., Cliver, E.W.: 1991, A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955 – 1990. Astrophys. J. 370, 442 – 448. doi: 10.1086/169831 .

    Article  ADS  Google Scholar 

  • Kiliç, H.: 2008, Midrange periodicities in sunspot numbers and flare index during solar cycle 23. Astron. Astrophys. 481, 235 – 238. doi: 10.1051/0004-6361:20078455 .

    Article  ADS  Google Scholar 

  • Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99 – 112. doi: 10.1007/s11207-009-9369-y .

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2004, Periodic oscillations in the North–South asymmetry of the solar magnetic field. Astron. Astrophys. 418, L17 – L20. doi: 10.1051/0004-6361:20040107 .

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21 – 23. periodicities, North–South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067 – 1082. doi: 10.1051/0004-6361:20042091 .

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K.: 2002, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701 – 706. doi: 10.1051/0004-6361:20021063 .

    Article  ADS  Google Scholar 

  • Lean, J.: 1990, Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21. Astrophys. J. 363, 718 – 727. doi: 10.1086/169378 .

    Article  ADS  Google Scholar 

  • Livingston, W.: 2002, Sunspots observed to physically weaken in 2000 – 2001. Solar Phys. 207, 41 – 45.

    Article  ADS  Google Scholar 

  • Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447 – 462. doi: 10.1007/BF00648343 .

    Article  ADS  Google Scholar 

  • Longcope, D., Choudhuri, A.R.: 2002, The orientational relaxation of bipolar active regions. Solar Phys. 205, 63 – 92. doi: 10.1023/A:1013896013842 .

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. doi: 10.1029/2008GL034896 .

    Article  ADS  Google Scholar 

  • Mendoza, B., Velasco, V.M., Valdés-Galicia, J.F.: 2006, Mid-term periodicities in the solar magnetic flux. Solar Phys. 233, 319 – 330. doi: 10.1007/s11207-006-4122-2 .

    Article  ADS  Google Scholar 

  • Nandy, D., Muñoz-Jaramillo, A., Martens, P.C.H.: 2011, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471, 80 – 82. doi: 10.1038/nature09786 .

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L.: 1994, The North–South asymmetry of sunspot areas during solar cycle 22. Solar Phys. 152, 481 – 485. doi: 10.1007/BF00680451 .

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L., Baudin, F.: 1998, Emergence of magnetic flux on the Sun as the cause of a 158-day periodicity in sunspot areas. Nature 394, 552 – 553. doi: 10.1038/29012 .

    Article  ADS  Google Scholar 

  • Penn, M.J., Livingston, W.: 2006, Temporal changes in sunspot umbral magnetic fields and temperatures. Astrophys. J. Lett. 649, L45 – L48. doi: 10.1086/508345 .

    Article  ADS  Google Scholar 

  • Percival, D.B., Walden, A.T.: 1993, Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623 – 625. doi: 10.1038/312623a0 .

    Article  ADS  Google Scholar 

  • Savitzky, A., Golay, M.J.E.: 1964, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627 – 1639.

    Article  ADS  Google Scholar 

  • Scargle, J.D.: 1982, Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835 – 853. doi: 10.1086/160554 .

    Article  ADS  Google Scholar 

  • Scargle, J.D.: 1989, Studies in astronomical time series analysis. III – Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J. 343, 874 – 887. doi: 10.1086/167757 .

    Article  ADS  Google Scholar 

  • Schultz, M., Stattegger, K.: 1997, Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Comp. Geosci. 23, 929 – 945.

    Article  Google Scholar 

  • Siegel, A.F.: 1980, Testing for periodicity in a time series. J. Am. Stat. Assoc. 75, 345 – 348.

    Article  MATH  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 – 78.

    Article  ADS  Google Scholar 

  • Verma, V.K.: 1987, On the increase of solar activity in the Southern Hemisphere during solar cycle 21. Solar Phys. 114, 185 – 188.

    Article  ADS  Google Scholar 

  • Verma, V.K., Joshi, G.C.: 1987, On the periodicities of sunspots and solar strong hard X-ray bursts. Solar Phys. 114, 415 – 418. doi: 10.1007/BF00167358 .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2003, On the fluctuating component of the Sun’s large-scale magnetic field. Astrophys. J. 590, 1111 – 1120. doi: 10.1086/375026 .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Evolution of the Sun’s polar fields during sunspot cycle 21 – poleward surges and long-term behavior. Astrophys. J. 347, 529 – 539. doi: 10.1086/168143 .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372 – 1386. doi: 10.1088/0004-637X/707/2/1372 .

    Article  ADS  Google Scholar 

  • Welch, P.D.: 1967, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70 – 73.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

NSO/Kitt Peak data used here produced cooperatively by NSF/NSO, NASA/GSFC, and NOAA/SEL. This work uses SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. The wavelet software was provided by C. Torrence and G. Compo and is available at URL: atoc.colorado.edu/research/wavelets/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Kumar Bisoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisoi, S.K., Janardhan, P., Chakrabarty, D. et al. Changes in Quasi-periodic Variations of Solar Photospheric Fields: Precursor to the Deep Solar Minimum in Cycle 23?. Sol Phys 289, 41–61 (2014). https://doi.org/10.1007/s11207-013-0335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0335-3

Keywords

Navigation