Skip to main content

Evolution of Sunspot Characteristics in Cycle 23

Abstract

The aim of this work is to present a statistical study of several parameters (variables) that define sunspot groups. These variables include maximum area, growth and decay times, as well as the evolution families, and solar-cycle phase the groups belong to. We classified group types based on the Zurich classification, which allows us to define a set of families based on their evolution patterns. The time variation of the area of a group was also studied, and a relationship between the maximum area and the growth and decay times was sought. Another study was carried out to find the correlation among different characteristics of the groups, as well as how the probability of a certain value of decay time can vary depending on morphological characteristics defined by these variables. Thus, a program based on a weight matrix combining the variables necessary to classify a group, together with the calculation of the probability for a specific event, has been produced. This approach allows us to predict the future behavior of a group from its historical evolution.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Altadill, D., Curto, J.J., Gaya-Piqué, L., Solé, G., Torta, J.M.: 2000, Coherency between solar activity and meteorological parameters at 11 year period. In: Wilson, A. (ed.) Proceedings of the 1st Solar and Space Weather Conference SP-463, ESA, Noordwijk, 473 – 475.

    Google Scholar 

  2. Balcells, M.: 1908, La observación solar. In: Gili, G. (ed.) Memorias del Observatorio del Ebro, Barcelona 2.

    Google Scholar 

  3. Baumann, I., Solanki, S.K.: 2005, On the size distribution of sunspot groups in the Greenwich sunspot record 1874 – 1976. Astron. Astrophys. 443, 1061 – 1066.

    ADS  Article  Google Scholar 

  4. Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855 – 861.

    ADS  Article  Google Scholar 

  5. Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys. J. 685, 1291 – 1296.

    ADS  Article  Google Scholar 

  6. Chapman, G.A., Dobias, J.J., Preminger, D.G., Walton, S.R.: 2003, On the decay rate of sunspots. Geophys. Res. Lett. 30, 1178.

    ADS  Article  Google Scholar 

  7. Cortie, A.L.: 1901, On the types of sunspot disturbances. Astrophys. J. 13, 260 – 264.

    ADS  Article  Google Scholar 

  8. Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411 – 429.

    ADS  Article  Google Scholar 

  9. Curto, J.J., Gaya-Piqué, L.R.: 2009a, Geoffectiveness of solar flares in magnetic crochet (sfe) production: I – Dependence on their spectral nature and position on the solar disk. J. Atmos. Solar-Terr. Phys. 71, 1695 – 1704.

    ADS  Article  Google Scholar 

  10. Curto, J.J., Gaya-Piqué, L.R.: 2009b, Geoffectiveness of solar flares in magnetic crochet (sfe) production: II – Dependence on the detection method. J. Atmos. Solar-Terr. Phys. 71, 1705 – 1710.

    ADS  Article  Google Scholar 

  11. Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994a, Solar flare effects at Ebre: regular and reversed solar flare effects, statistical analysis (1953 to 1985), a global case study and a model of elliptical ionospheric currents. J. Geophys. Res. 99, 3945 – 3954.

    ADS  Article  Google Scholar 

  12. Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994b, Solar flare effects at Ebre: unidimentional physical, integrated model. J. Geophys. Res. 99, 23289 – 23296.

    ADS  Article  Google Scholar 

  13. Du, Z.L.: 2011, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407 – 416.

    ADS  Article  Google Scholar 

  14. Du, Z.L., Du, S.Y.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437.

    ADS  Article  Google Scholar 

  15. Du, Z.L., Wang, H.N.: 2011, Is a higher correlation necessary for a more accurate prediction? Sci. China 54, 172 – 175.

    Google Scholar 

  16. Galdón, E., Alberca, L.F.: 1971, Seasonal and solar cycle variation of total electron content at temperature latitudes. Urania 56, 110 – 121.

    Google Scholar 

  17. Gaya-Piqué, L.R., Curto, J.J., Torta, J.M., Chulliat, A.: 2008, Equivalent ionospheric currents for the 5 December 2006 solar flare effect determined from spherical cap harmonic analysis. J. Geophys. Res. 113, A07304.

    ADS  Article  Google Scholar 

  18. Hathaway, D.H., Choudhary, D.P.: 2008, Sunspot group decay. Solar Phys. 250, 269 – 278.

    ADS  Article  Google Scholar 

  19. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375 – 22388.

    ADS  Article  Google Scholar 

  20. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357 – 370.

    ADS  Article  Google Scholar 

  21. Javaraiah, J.: 2011, Long-term variations in the growth and decay rates of sunspot groups. Solar Phys. 270, 463 – 483.

    ADS  Article  Google Scholar 

  22. Javaraiah, J.: 2012, Solar cycle variations in the growth and decay of sunspot groups. Astrophys. Space Sci. 338, 217 – 226.

    ADS  Article  Google Scholar 

  23. Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Ozguc, A., Rozelot, J.P., Cao, W.: 2011, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30.

    ADS  Article  Google Scholar 

  24. Komitov, B., Bonev, B.: 2001, Amplitude variations of the 11 year cycle and the current solar maximum 23. Astrophys. J. Lett. 554, L119 – L122.

    ADS  Article  Google Scholar 

  25. Lantos, P., Richard, O.: 1998, On the prediction of maximum amplitude for solar cycles using geomagnetic precursors. Solar Phys. 182, 231 – 246.

    ADS  Article  Google Scholar 

  26. Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11.

    ADS  Article  Google Scholar 

  27. Li, K.J.: 1999, The shape of the sunspot cycle described by sunspot areas. Astron. Astrophys. 345, 1006 – 1010.

    ADS  Google Scholar 

  28. Li, K.J., Gao, P.X., Su, T.W.: 2005, Estimating the size and timing of the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 5, 539 – 545.

    ADS  Article  Google Scholar 

  29. Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291.

    ADS  Article  Google Scholar 

  30. Livadiotis, G., Moussas, X.: 2007, The sunspot as an autonomous dynamical system: a model for the growth and decay phases of sunspots. Physica A 379, 436 – 458.

    ADS  Article  Google Scholar 

  31. Livingston, W., Penn, M.: 2009, Are sunspots different during this solar minimum? Eos 90, 257 – 264.

    ADS  Article  Google Scholar 

  32. López Arroyo, M.: 1962, La evolucion del area de las manchas solares. Vrania 255256.

  33. Martínez Pillet, V.: 2002, Decay of sunspots. Astron. Nachr. 323, 342 – 348.

    ADS  Article  Google Scholar 

  34. Martínez Pillet, V., Moreno-Insertis, F., Vázquez, M.: 1993, The distribution of sunspot decay rates. Astron. Astrophys. 274, 521 – 533.

    ADS  Google Scholar 

  35. Meyer, F., Schmidt, H.U., Weiss, N.O., Wilson, P.R.: 1974, The growth and decay of sunspots. Mon. Not. Roy. Astron. Soc. 169, 35 – 57.

    ADS  Google Scholar 

  36. Moreno-Insertis, F., Vázquez, M.: 1988, A statistical study of the decay phase of sunspots groups from 1874 to 1939. Astron. Astrophys. 205, 289 – 296.

    ADS  Google Scholar 

  37. Pancheva, D., Alberca, L.F., de la Morena, B.: 1992, Long-term prediction of the foF2 on the rising and falling parts of the solar cycle. In: Alberca, L.F. (ed.) PRIME/URSI Joint Workshop, Data Validation of Ionospheric Models and Maps (VIM), Memoria 16, Observatori de l’Ebre, 178 – 185.

  38. Pericas, J.: 1912, Algunas instrucciones para medir la posición de las manchas y fáculas solares por medio de gráficas. Bol. Soc. Astron. Barcelona 3, 5 – 9.

    Google Scholar 

  39. Pericas, J.: 1914, Tres ábacos para las mediciones heliográficas. Mem. Obs. Ebro 5.

  40. Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7(6), http://solarphysics.livingreviews.org/Articles/lrsp-2010-6/ .

  41. Robinson, R.D., Boice, D.C.: 1982, Size variations in regular sunspots. Solar Phys. 81, 25 – 31.

    ADS  Article  Google Scholar 

  42. Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153 – 286.

    ADS  Article  Google Scholar 

  43. Stix, M.: 2002, Sunspots: what is interesting? Astron. Nachr. 323, 178 – 185.

    ADS  Article  Google Scholar 

  44. Tlatov, A.G.: 2009, Some notes concerning the prediction of the amplitude of the solar activity cycles. Astrophys. Space Sci. 323, 221 – 224.

    ADS  Article  Google Scholar 

  45. Torta, J.M., Curto, J.J., Bencze, P.: 1997, Behaviour of the quiet day ionospheric current system in the European region. J. Geophys. Res. 102, 2483 – 2494.

    ADS  Article  Google Scholar 

  46. Torta, J.M., Marsal, S., Curto, J.J., Gaya-Piqué, L.R.: 2010, Behaviour of the quiet day geomagnetic variation at Livingston Island and variability of the Sq focus position in the South American-Antarctic Peninsula region. Earth Planets Space 62, 297 – 307.

    ADS  Article  Google Scholar 

  47. Vázquez, M., Vaquero, J.M., Curto, J.J.: 2006, On the connection between solar activity and low latitude aurorae in the period 1715 – 1860. Solar Phys. 238, 405 – 420.

    ADS  Article  Google Scholar 

  48. Verdes, P.F., Parodi, M.A., Granitto, P.M., Navone, H.D., Piancetini, R.D., Ceccatto, H.A.: 2000, Predictions of the maximum amplitude for solar cycle 23 and its subsequent behaviour using nonlinear methods. Solar Phys. 191, 419 – 425.

    ADS  Article  Google Scholar 

  49. Waldmeier, M.-I.: 1947, Sunspots. 2: Evolution tables of sunspot groups. Q. Bull. Solar Act. 77, 48 – 52.

    Google Scholar 

  50. Wang, J.L.: 2006, Evolution of the level of sunspot activity in solar cycles I. Evolution in the descending phase. Chin. J. Astron. Astrophys. 6, 354 – 362.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Nuria Castellano, Ana Lola López, Gerard Ariño, Oriol Picó, Mireia Ibáñez, Laura Ruiz, Francisco De Borja González, and Albert Costa for their work on database management and its characterization and Jordi Maneu Victoria for his support with the translation. We also wish to thank the solar observers José Cid, Miguel Calonge, and Isidre Moncal for their constant work taking daily photographs and measuring sunspots and sunspot groups and thus providing us with this valuable collection of information. This research has been partially supported by a Universitat Ramon Llull Suport a Grups de Recerca grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. J. Curto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gómez, A., Curto, J.J. & Gras, C. Evolution of Sunspot Characteristics in Cycle 23. Sol Phys 289, 91–106 (2014). https://doi.org/10.1007/s11207-013-0323-7

Download citation

Keywords

  • Space weather
  • Sunspot groups
  • Sunspots
  • Zurich classification