Skip to main content
Log in

Evolution of Sunspot Characteristics in Cycle 23

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The aim of this work is to present a statistical study of several parameters (variables) that define sunspot groups. These variables include maximum area, growth and decay times, as well as the evolution families, and solar-cycle phase the groups belong to. We classified group types based on the Zurich classification, which allows us to define a set of families based on their evolution patterns. The time variation of the area of a group was also studied, and a relationship between the maximum area and the growth and decay times was sought. Another study was carried out to find the correlation among different characteristics of the groups, as well as how the probability of a certain value of decay time can vary depending on morphological characteristics defined by these variables. Thus, a program based on a weight matrix combining the variables necessary to classify a group, together with the calculation of the probability for a specific event, has been produced. This approach allows us to predict the future behavior of a group from its historical evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altadill, D., Curto, J.J., Gaya-Piqué, L., Solé, G., Torta, J.M.: 2000, Coherency between solar activity and meteorological parameters at 11 year period. In: Wilson, A. (ed.) Proceedings of the 1st Solar and Space Weather Conference SP-463, ESA, Noordwijk, 473 – 475.

    Google Scholar 

  • Balcells, M.: 1908, La observación solar. In: Gili, G. (ed.) Memorias del Observatorio del Ebro, Barcelona 2.

    Google Scholar 

  • Baumann, I., Solanki, S.K.: 2005, On the size distribution of sunspot groups in the Greenwich sunspot record 1874 – 1976. Astron. Astrophys. 443, 1061 – 1066.

    Article  ADS  Google Scholar 

  • Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855 – 861.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys. J. 685, 1291 – 1296.

    Article  ADS  Google Scholar 

  • Chapman, G.A., Dobias, J.J., Preminger, D.G., Walton, S.R.: 2003, On the decay rate of sunspots. Geophys. Res. Lett. 30, 1178.

    Article  ADS  Google Scholar 

  • Cortie, A.L.: 1901, On the types of sunspot disturbances. Astrophys. J. 13, 260 – 264.

    Article  ADS  Google Scholar 

  • Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411 – 429.

    Article  ADS  Google Scholar 

  • Curto, J.J., Gaya-Piqué, L.R.: 2009a, Geoffectiveness of solar flares in magnetic crochet (sfe) production: I – Dependence on their spectral nature and position on the solar disk. J. Atmos. Solar-Terr. Phys. 71, 1695 – 1704.

    Article  ADS  Google Scholar 

  • Curto, J.J., Gaya-Piqué, L.R.: 2009b, Geoffectiveness of solar flares in magnetic crochet (sfe) production: II – Dependence on the detection method. J. Atmos. Solar-Terr. Phys. 71, 1705 – 1710.

    Article  ADS  Google Scholar 

  • Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994a, Solar flare effects at Ebre: regular and reversed solar flare effects, statistical analysis (1953 to 1985), a global case study and a model of elliptical ionospheric currents. J. Geophys. Res. 99, 3945 – 3954.

    Article  ADS  Google Scholar 

  • Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994b, Solar flare effects at Ebre: unidimentional physical, integrated model. J. Geophys. Res. 99, 23289 – 23296.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2011, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407 – 416.

    Article  ADS  Google Scholar 

  • Du, Z.L., Du, S.Y.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2011, Is a higher correlation necessary for a more accurate prediction? Sci. China 54, 172 – 175.

    Google Scholar 

  • Galdón, E., Alberca, L.F.: 1971, Seasonal and solar cycle variation of total electron content at temperature latitudes. Urania 56, 110 – 121.

    Google Scholar 

  • Gaya-Piqué, L.R., Curto, J.J., Torta, J.M., Chulliat, A.: 2008, Equivalent ionospheric currents for the 5 December 2006 solar flare effect determined from spherical cap harmonic analysis. J. Geophys. Res. 113, A07304.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Choudhary, D.P.: 2008, Sunspot group decay. Solar Phys. 250, 269 – 278.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375 – 22388.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357 – 370.

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2011, Long-term variations in the growth and decay rates of sunspot groups. Solar Phys. 270, 463 – 483.

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2012, Solar cycle variations in the growth and decay of sunspot groups. Astrophys. Space Sci. 338, 217 – 226.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Ozguc, A., Rozelot, J.P., Cao, W.: 2011, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30.

    Article  ADS  Google Scholar 

  • Komitov, B., Bonev, B.: 2001, Amplitude variations of the 11 year cycle and the current solar maximum 23. Astrophys. J. Lett. 554, L119 – L122.

    Article  ADS  Google Scholar 

  • Lantos, P., Richard, O.: 1998, On the prediction of maximum amplitude for solar cycles using geomagnetic precursors. Solar Phys. 182, 231 – 246.

    Article  ADS  Google Scholar 

  • Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11.

    Article  ADS  Google Scholar 

  • Li, K.J.: 1999, The shape of the sunspot cycle described by sunspot areas. Astron. Astrophys. 345, 1006 – 1010.

    ADS  Google Scholar 

  • Li, K.J., Gao, P.X., Su, T.W.: 2005, Estimating the size and timing of the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 5, 539 – 545.

    Article  ADS  Google Scholar 

  • Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291.

    Article  ADS  Google Scholar 

  • Livadiotis, G., Moussas, X.: 2007, The sunspot as an autonomous dynamical system: a model for the growth and decay phases of sunspots. Physica A 379, 436 – 458.

    Article  ADS  Google Scholar 

  • Livingston, W., Penn, M.: 2009, Are sunspots different during this solar minimum? Eos 90, 257 – 264.

    Article  ADS  Google Scholar 

  • López Arroyo, M.: 1962, La evolucion del area de las manchas solares. Vrania 255256.

  • Martínez Pillet, V.: 2002, Decay of sunspots. Astron. Nachr. 323, 342 – 348.

    Article  ADS  Google Scholar 

  • Martínez Pillet, V., Moreno-Insertis, F., Vázquez, M.: 1993, The distribution of sunspot decay rates. Astron. Astrophys. 274, 521 – 533.

    ADS  Google Scholar 

  • Meyer, F., Schmidt, H.U., Weiss, N.O., Wilson, P.R.: 1974, The growth and decay of sunspots. Mon. Not. Roy. Astron. Soc. 169, 35 – 57.

    ADS  Google Scholar 

  • Moreno-Insertis, F., Vázquez, M.: 1988, A statistical study of the decay phase of sunspots groups from 1874 to 1939. Astron. Astrophys. 205, 289 – 296.

    ADS  Google Scholar 

  • Pancheva, D., Alberca, L.F., de la Morena, B.: 1992, Long-term prediction of the foF2 on the rising and falling parts of the solar cycle. In: Alberca, L.F. (ed.) PRIME/URSI Joint Workshop, Data Validation of Ionospheric Models and Maps (VIM), Memoria 16, Observatori de l’Ebre, 178 – 185.

  • Pericas, J.: 1912, Algunas instrucciones para medir la posición de las manchas y fáculas solares por medio de gráficas. Bol. Soc. Astron. Barcelona 3, 5 – 9.

    Google Scholar 

  • Pericas, J.: 1914, Tres ábacos para las mediciones heliográficas. Mem. Obs. Ebro 5.

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7(6), http://solarphysics.livingreviews.org/Articles/lrsp-2010-6/ .

  • Robinson, R.D., Boice, D.C.: 1982, Size variations in regular sunspots. Solar Phys. 81, 25 – 31.

    Article  ADS  Google Scholar 

  • Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153 – 286.

    Article  ADS  Google Scholar 

  • Stix, M.: 2002, Sunspots: what is interesting? Astron. Nachr. 323, 178 – 185.

    Article  ADS  Google Scholar 

  • Tlatov, A.G.: 2009, Some notes concerning the prediction of the amplitude of the solar activity cycles. Astrophys. Space Sci. 323, 221 – 224.

    Article  ADS  Google Scholar 

  • Torta, J.M., Curto, J.J., Bencze, P.: 1997, Behaviour of the quiet day ionospheric current system in the European region. J. Geophys. Res. 102, 2483 – 2494.

    Article  ADS  Google Scholar 

  • Torta, J.M., Marsal, S., Curto, J.J., Gaya-Piqué, L.R.: 2010, Behaviour of the quiet day geomagnetic variation at Livingston Island and variability of the Sq focus position in the South American-Antarctic Peninsula region. Earth Planets Space 62, 297 – 307.

    Article  ADS  Google Scholar 

  • Vázquez, M., Vaquero, J.M., Curto, J.J.: 2006, On the connection between solar activity and low latitude aurorae in the period 1715 – 1860. Solar Phys. 238, 405 – 420.

    Article  ADS  Google Scholar 

  • Verdes, P.F., Parodi, M.A., Granitto, P.M., Navone, H.D., Piancetini, R.D., Ceccatto, H.A.: 2000, Predictions of the maximum amplitude for solar cycle 23 and its subsequent behaviour using nonlinear methods. Solar Phys. 191, 419 – 425.

    Article  ADS  Google Scholar 

  • Waldmeier, M.-I.: 1947, Sunspots. 2: Evolution tables of sunspot groups. Q. Bull. Solar Act. 77, 48 – 52.

    Google Scholar 

  • Wang, J.L.: 2006, Evolution of the level of sunspot activity in solar cycles I. Evolution in the descending phase. Chin. J. Astron. Astrophys. 6, 354 – 362.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Nuria Castellano, Ana Lola López, Gerard Ariño, Oriol Picó, Mireia Ibáñez, Laura Ruiz, Francisco De Borja González, and Albert Costa for their work on database management and its characterization and Jordi Maneu Victoria for his support with the translation. We also wish to thank the solar observers José Cid, Miguel Calonge, and Isidre Moncal for their constant work taking daily photographs and measuring sunspots and sunspot groups and thus providing us with this valuable collection of information. This research has been partially supported by a Universitat Ramon Llull Suport a Grups de Recerca grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Curto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, A., Curto, J.J. & Gras, C. Evolution of Sunspot Characteristics in Cycle 23. Sol Phys 289, 91–106 (2014). https://doi.org/10.1007/s11207-013-0323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0323-7

Keywords

Navigation