Abstract
The aim of this work is to present a statistical study of several parameters (variables) that define sunspot groups. These variables include maximum area, growth and decay times, as well as the evolution families, and solar-cycle phase the groups belong to. We classified group types based on the Zurich classification, which allows us to define a set of families based on their evolution patterns. The time variation of the area of a group was also studied, and a relationship between the maximum area and the growth and decay times was sought. Another study was carried out to find the correlation among different characteristics of the groups, as well as how the probability of a certain value of decay time can vary depending on morphological characteristics defined by these variables. Thus, a program based on a weight matrix combining the variables necessary to classify a group, together with the calculation of the probability for a specific event, has been produced. This approach allows us to predict the future behavior of a group from its historical evolution.
Similar content being viewed by others
References
Altadill, D., Curto, J.J., Gaya-Piqué, L., Solé, G., Torta, J.M.: 2000, Coherency between solar activity and meteorological parameters at 11 year period. In: Wilson, A. (ed.) Proceedings of the 1st Solar and Space Weather Conference SP-463, ESA, Noordwijk, 473 – 475.
Balcells, M.: 1908, La observación solar. In: Gili, G. (ed.) Memorias del Observatorio del Ebro, Barcelona 2.
Baumann, I., Solanki, S.K.: 2005, On the size distribution of sunspot groups in the Greenwich sunspot record 1874 – 1976. Astron. Astrophys. 443, 1061 – 1066.
Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855 – 861.
Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys. J. 685, 1291 – 1296.
Chapman, G.A., Dobias, J.J., Preminger, D.G., Walton, S.R.: 2003, On the decay rate of sunspots. Geophys. Res. Lett. 30, 1178.
Cortie, A.L.: 1901, On the types of sunspot disturbances. Astrophys. J. 13, 260 – 264.
Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411 – 429.
Curto, J.J., Gaya-Piqué, L.R.: 2009a, Geoffectiveness of solar flares in magnetic crochet (sfe) production: I – Dependence on their spectral nature and position on the solar disk. J. Atmos. Solar-Terr. Phys. 71, 1695 – 1704.
Curto, J.J., Gaya-Piqué, L.R.: 2009b, Geoffectiveness of solar flares in magnetic crochet (sfe) production: II – Dependence on the detection method. J. Atmos. Solar-Terr. Phys. 71, 1705 – 1710.
Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994a, Solar flare effects at Ebre: regular and reversed solar flare effects, statistical analysis (1953 to 1985), a global case study and a model of elliptical ionospheric currents. J. Geophys. Res. 99, 3945 – 3954.
Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994b, Solar flare effects at Ebre: unidimentional physical, integrated model. J. Geophys. Res. 99, 23289 – 23296.
Du, Z.L.: 2011, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407 – 416.
Du, Z.L., Du, S.Y.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437.
Du, Z.L., Wang, H.N.: 2011, Is a higher correlation necessary for a more accurate prediction? Sci. China 54, 172 – 175.
Galdón, E., Alberca, L.F.: 1971, Seasonal and solar cycle variation of total electron content at temperature latitudes. Urania 56, 110 – 121.
Gaya-Piqué, L.R., Curto, J.J., Torta, J.M., Chulliat, A.: 2008, Equivalent ionospheric currents for the 5 December 2006 solar flare effect determined from spherical cap harmonic analysis. J. Geophys. Res. 113, A07304.
Hathaway, D.H., Choudhary, D.P.: 2008, Sunspot group decay. Solar Phys. 250, 269 – 278.
Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375 – 22388.
Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357 – 370.
Javaraiah, J.: 2011, Long-term variations in the growth and decay rates of sunspot groups. Solar Phys. 270, 463 – 483.
Javaraiah, J.: 2012, Solar cycle variations in the growth and decay of sunspot groups. Astrophys. Space Sci. 338, 217 – 226.
Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Ozguc, A., Rozelot, J.P., Cao, W.: 2011, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30.
Komitov, B., Bonev, B.: 2001, Amplitude variations of the 11 year cycle and the current solar maximum 23. Astrophys. J. Lett. 554, L119 – L122.
Lantos, P., Richard, O.: 1998, On the prediction of maximum amplitude for solar cycles using geomagnetic precursors. Solar Phys. 182, 231 – 246.
Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11.
Li, K.J.: 1999, The shape of the sunspot cycle described by sunspot areas. Astron. Astrophys. 345, 1006 – 1010.
Li, K.J., Gao, P.X., Su, T.W.: 2005, Estimating the size and timing of the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 5, 539 – 545.
Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291.
Livadiotis, G., Moussas, X.: 2007, The sunspot as an autonomous dynamical system: a model for the growth and decay phases of sunspots. Physica A 379, 436 – 458.
Livingston, W., Penn, M.: 2009, Are sunspots different during this solar minimum? Eos 90, 257 – 264.
López Arroyo, M.: 1962, La evolucion del area de las manchas solares. Vrania 255–256.
Martínez Pillet, V.: 2002, Decay of sunspots. Astron. Nachr. 323, 342 – 348.
Martínez Pillet, V., Moreno-Insertis, F., Vázquez, M.: 1993, The distribution of sunspot decay rates. Astron. Astrophys. 274, 521 – 533.
Meyer, F., Schmidt, H.U., Weiss, N.O., Wilson, P.R.: 1974, The growth and decay of sunspots. Mon. Not. Roy. Astron. Soc. 169, 35 – 57.
Moreno-Insertis, F., Vázquez, M.: 1988, A statistical study of the decay phase of sunspots groups from 1874 to 1939. Astron. Astrophys. 205, 289 – 296.
Pancheva, D., Alberca, L.F., de la Morena, B.: 1992, Long-term prediction of the foF2 on the rising and falling parts of the solar cycle. In: Alberca, L.F. (ed.) PRIME/URSI Joint Workshop, Data Validation of Ionospheric Models and Maps (VIM), Memoria 16, Observatori de l’Ebre, 178 – 185.
Pericas, J.: 1912, Algunas instrucciones para medir la posición de las manchas y fáculas solares por medio de gráficas. Bol. Soc. Astron. Barcelona 3, 5 – 9.
Pericas, J.: 1914, Tres ábacos para las mediciones heliográficas. Mem. Obs. Ebro 5.
Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7(6), http://solarphysics.livingreviews.org/Articles/lrsp-2010-6/ .
Robinson, R.D., Boice, D.C.: 1982, Size variations in regular sunspots. Solar Phys. 81, 25 – 31.
Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153 – 286.
Stix, M.: 2002, Sunspots: what is interesting? Astron. Nachr. 323, 178 – 185.
Tlatov, A.G.: 2009, Some notes concerning the prediction of the amplitude of the solar activity cycles. Astrophys. Space Sci. 323, 221 – 224.
Torta, J.M., Curto, J.J., Bencze, P.: 1997, Behaviour of the quiet day ionospheric current system in the European region. J. Geophys. Res. 102, 2483 – 2494.
Torta, J.M., Marsal, S., Curto, J.J., Gaya-Piqué, L.R.: 2010, Behaviour of the quiet day geomagnetic variation at Livingston Island and variability of the Sq focus position in the South American-Antarctic Peninsula region. Earth Planets Space 62, 297 – 307.
Vázquez, M., Vaquero, J.M., Curto, J.J.: 2006, On the connection between solar activity and low latitude aurorae in the period 1715 – 1860. Solar Phys. 238, 405 – 420.
Verdes, P.F., Parodi, M.A., Granitto, P.M., Navone, H.D., Piancetini, R.D., Ceccatto, H.A.: 2000, Predictions of the maximum amplitude for solar cycle 23 and its subsequent behaviour using nonlinear methods. Solar Phys. 191, 419 – 425.
Waldmeier, M.-I.: 1947, Sunspots. 2: Evolution tables of sunspot groups. Q. Bull. Solar Act. 77, 48 – 52.
Wang, J.L.: 2006, Evolution of the level of sunspot activity in solar cycles I. Evolution in the descending phase. Chin. J. Astron. Astrophys. 6, 354 – 362.
Acknowledgements
The authors thank Nuria Castellano, Ana Lola López, Gerard Ariño, Oriol Picó, Mireia Ibáñez, Laura Ruiz, Francisco De Borja González, and Albert Costa for their work on database management and its characterization and Jordi Maneu Victoria for his support with the translation. We also wish to thank the solar observers José Cid, Miguel Calonge, and Isidre Moncal for their constant work taking daily photographs and measuring sunspots and sunspot groups and thus providing us with this valuable collection of information. This research has been partially supported by a Universitat Ramon Llull Suport a Grups de Recerca grant.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gómez, A., Curto, J.J. & Gras, C. Evolution of Sunspot Characteristics in Cycle 23. Sol Phys 289, 91–106 (2014). https://doi.org/10.1007/s11207-013-0323-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11207-013-0323-7