Solar Physics

, Volume 289, Issue 1, pp 91–106 | Cite as

Evolution of Sunspot Characteristics in Cycle 23

  • A. Gómez
  • J. J. CurtoEmail author
  • C. Gras


The aim of this work is to present a statistical study of several parameters (variables) that define sunspot groups. These variables include maximum area, growth and decay times, as well as the evolution families, and solar-cycle phase the groups belong to. We classified group types based on the Zurich classification, which allows us to define a set of families based on their evolution patterns. The time variation of the area of a group was also studied, and a relationship between the maximum area and the growth and decay times was sought. Another study was carried out to find the correlation among different characteristics of the groups, as well as how the probability of a certain value of decay time can vary depending on morphological characteristics defined by these variables. Thus, a program based on a weight matrix combining the variables necessary to classify a group, together with the calculation of the probability for a specific event, has been produced. This approach allows us to predict the future behavior of a group from its historical evolution.


Space weather Sunspot groups Sunspots Zurich classification 



The authors thank Nuria Castellano, Ana Lola López, Gerard Ariño, Oriol Picó, Mireia Ibáñez, Laura Ruiz, Francisco De Borja González, and Albert Costa for their work on database management and its characterization and Jordi Maneu Victoria for his support with the translation. We also wish to thank the solar observers José Cid, Miguel Calonge, and Isidre Moncal for their constant work taking daily photographs and measuring sunspots and sunspot groups and thus providing us with this valuable collection of information. This research has been partially supported by a Universitat Ramon Llull Suport a Grups de Recerca grant.


  1. Altadill, D., Curto, J.J., Gaya-Piqué, L., Solé, G., Torta, J.M.: 2000, Coherency between solar activity and meteorological parameters at 11 year period. In: Wilson, A. (ed.) Proceedings of the 1st Solar and Space Weather Conference SP-463, ESA, Noordwijk, 473 – 475. Google Scholar
  2. Balcells, M.: 1908, La observación solar. In: Gili, G. (ed.) Memorias del Observatorio del Ebro, Barcelona 2. Google Scholar
  3. Baumann, I., Solanki, S.K.: 2005, On the size distribution of sunspot groups in the Greenwich sunspot record 1874 – 1976. Astron. Astrophys. 443, 1061 – 1066. ADSCrossRefGoogle Scholar
  4. Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855 – 861. ADSCrossRefGoogle Scholar
  5. Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys. J. 685, 1291 – 1296. ADSCrossRefGoogle Scholar
  6. Chapman, G.A., Dobias, J.J., Preminger, D.G., Walton, S.R.: 2003, On the decay rate of sunspots. Geophys. Res. Lett. 30, 1178. ADSCrossRefGoogle Scholar
  7. Cortie, A.L.: 1901, On the types of sunspot disturbances. Astrophys. J. 13, 260 – 264. ADSCrossRefGoogle Scholar
  8. Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411 – 429. ADSCrossRefGoogle Scholar
  9. Curto, J.J., Gaya-Piqué, L.R.: 2009a, Geoffectiveness of solar flares in magnetic crochet (sfe) production: I – Dependence on their spectral nature and position on the solar disk. J. Atmos. Solar-Terr. Phys. 71, 1695 – 1704. ADSCrossRefGoogle Scholar
  10. Curto, J.J., Gaya-Piqué, L.R.: 2009b, Geoffectiveness of solar flares in magnetic crochet (sfe) production: II – Dependence on the detection method. J. Atmos. Solar-Terr. Phys. 71, 1705 – 1710. ADSCrossRefGoogle Scholar
  11. Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994a, Solar flare effects at Ebre: regular and reversed solar flare effects, statistical analysis (1953 to 1985), a global case study and a model of elliptical ionospheric currents. J. Geophys. Res. 99, 3945 – 3954. ADSCrossRefGoogle Scholar
  12. Curto, J.J., Amory-Mazaudier, C., Cardús, J.O., Torta, J.M., Menvielle, M.: 1994b, Solar flare effects at Ebre: unidimentional physical, integrated model. J. Geophys. Res. 99, 23289 – 23296. ADSCrossRefGoogle Scholar
  13. Du, Z.L.: 2011, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407 – 416. ADSCrossRefGoogle Scholar
  14. Du, Z.L., Du, S.Y.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437. ADSCrossRefGoogle Scholar
  15. Du, Z.L., Wang, H.N.: 2011, Is a higher correlation necessary for a more accurate prediction? Sci. China 54, 172 – 175. Google Scholar
  16. Galdón, E., Alberca, L.F.: 1971, Seasonal and solar cycle variation of total electron content at temperature latitudes. Urania 56, 110 – 121. Google Scholar
  17. Gaya-Piqué, L.R., Curto, J.J., Torta, J.M., Chulliat, A.: 2008, Equivalent ionospheric currents for the 5 December 2006 solar flare effect determined from spherical cap harmonic analysis. J. Geophys. Res. 113, A07304. ADSCrossRefGoogle Scholar
  18. Hathaway, D.H., Choudhary, D.P.: 2008, Sunspot group decay. Solar Phys. 250, 269 – 278. ADSCrossRefGoogle Scholar
  19. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375 – 22388. ADSCrossRefGoogle Scholar
  20. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357 – 370. ADSCrossRefGoogle Scholar
  21. Javaraiah, J.: 2011, Long-term variations in the growth and decay rates of sunspot groups. Solar Phys. 270, 463 – 483. ADSCrossRefGoogle Scholar
  22. Javaraiah, J.: 2012, Solar cycle variations in the growth and decay of sunspot groups. Astrophys. Space Sci. 338, 217 – 226. ADSCrossRefGoogle Scholar
  23. Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Ozguc, A., Rozelot, J.P., Cao, W.: 2011, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30. ADSCrossRefGoogle Scholar
  24. Komitov, B., Bonev, B.: 2001, Amplitude variations of the 11 year cycle and the current solar maximum 23. Astrophys. J. Lett. 554, L119 – L122. ADSCrossRefGoogle Scholar
  25. Lantos, P., Richard, O.: 1998, On the prediction of maximum amplitude for solar cycles using geomagnetic precursors. Solar Phys. 182, 231 – 246. ADSCrossRefGoogle Scholar
  26. Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11. ADSCrossRefGoogle Scholar
  27. Li, K.J.: 1999, The shape of the sunspot cycle described by sunspot areas. Astron. Astrophys. 345, 1006 – 1010. ADSGoogle Scholar
  28. Li, K.J., Gao, P.X., Su, T.W.: 2005, Estimating the size and timing of the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 5, 539 – 545. ADSCrossRefGoogle Scholar
  29. Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291. ADSCrossRefGoogle Scholar
  30. Livadiotis, G., Moussas, X.: 2007, The sunspot as an autonomous dynamical system: a model for the growth and decay phases of sunspots. Physica A 379, 436 – 458. ADSCrossRefGoogle Scholar
  31. Livingston, W., Penn, M.: 2009, Are sunspots different during this solar minimum? Eos 90, 257 – 264. ADSCrossRefGoogle Scholar
  32. López Arroyo, M.: 1962, La evolucion del area de las manchas solares. Vrania 255256. Google Scholar
  33. Martínez Pillet, V.: 2002, Decay of sunspots. Astron. Nachr. 323, 342 – 348. ADSCrossRefGoogle Scholar
  34. Martínez Pillet, V., Moreno-Insertis, F., Vázquez, M.: 1993, The distribution of sunspot decay rates. Astron. Astrophys. 274, 521 – 533. ADSGoogle Scholar
  35. Meyer, F., Schmidt, H.U., Weiss, N.O., Wilson, P.R.: 1974, The growth and decay of sunspots. Mon. Not. Roy. Astron. Soc. 169, 35 – 57. ADSGoogle Scholar
  36. Moreno-Insertis, F., Vázquez, M.: 1988, A statistical study of the decay phase of sunspots groups from 1874 to 1939. Astron. Astrophys. 205, 289 – 296. ADSGoogle Scholar
  37. Pancheva, D., Alberca, L.F., de la Morena, B.: 1992, Long-term prediction of the foF2 on the rising and falling parts of the solar cycle. In: Alberca, L.F. (ed.) PRIME/URSI Joint Workshop, Data Validation of Ionospheric Models and Maps (VIM), Memoria 16, Observatori de l’Ebre, 178 – 185. Google Scholar
  38. Pericas, J.: 1912, Algunas instrucciones para medir la posición de las manchas y fáculas solares por medio de gráficas. Bol. Soc. Astron. Barcelona 3, 5 – 9. Google Scholar
  39. Pericas, J.: 1914, Tres ábacos para las mediciones heliográficas. Mem. Obs. Ebro 5. Google Scholar
  40. Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7(6),
  41. Robinson, R.D., Boice, D.C.: 1982, Size variations in regular sunspots. Solar Phys. 81, 25 – 31. ADSCrossRefGoogle Scholar
  42. Solanki, S.K.: 2003, Sunspots: an overview. Astron. Astrophys. Rev. 11, 153 – 286. ADSCrossRefGoogle Scholar
  43. Stix, M.: 2002, Sunspots: what is interesting? Astron. Nachr. 323, 178 – 185. ADSCrossRefGoogle Scholar
  44. Tlatov, A.G.: 2009, Some notes concerning the prediction of the amplitude of the solar activity cycles. Astrophys. Space Sci. 323, 221 – 224. ADSCrossRefGoogle Scholar
  45. Torta, J.M., Curto, J.J., Bencze, P.: 1997, Behaviour of the quiet day ionospheric current system in the European region. J. Geophys. Res. 102, 2483 – 2494. ADSCrossRefGoogle Scholar
  46. Torta, J.M., Marsal, S., Curto, J.J., Gaya-Piqué, L.R.: 2010, Behaviour of the quiet day geomagnetic variation at Livingston Island and variability of the Sq focus position in the South American-Antarctic Peninsula region. Earth Planets Space 62, 297 – 307. ADSCrossRefGoogle Scholar
  47. Vázquez, M., Vaquero, J.M., Curto, J.J.: 2006, On the connection between solar activity and low latitude aurorae in the period 1715 – 1860. Solar Phys. 238, 405 – 420. ADSCrossRefGoogle Scholar
  48. Verdes, P.F., Parodi, M.A., Granitto, P.M., Navone, H.D., Piancetini, R.D., Ceccatto, H.A.: 2000, Predictions of the maximum amplitude for solar cycle 23 and its subsequent behaviour using nonlinear methods. Solar Phys. 191, 419 – 425. ADSCrossRefGoogle Scholar
  49. Waldmeier, M.-I.: 1947, Sunspots. 2: Evolution tables of sunspot groups. Q. Bull. Solar Act. 77, 48 – 52. Google Scholar
  50. Wang, J.L.: 2006, Evolution of the level of sunspot activity in solar cycles I. Evolution in the descending phase. Chin. J. Astron. Astrophys. 6, 354 – 362. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Observatori de l’Ebre (OE)CSIC-URLRoquetesSpain

Personalised recommendations