Skip to main content

A Phenomenological Study of the Cosmic Ray Variations over the Past 9400 Years, and Their Implications Regarding Solar Activity and the Solar Dynamo

Abstract

Two 9400-year long 10Be data records from the Arctic and Antarctic and a 14C record of equal length were used to investigate the periodicities in the cosmic radiation incident on Earth throughout the past 9400 years. Fifteen significant periodicities between 40 and 2320 years are observed in the 10Be and 14C records, there being close agreement between the periodicities in each record. We found that the periodic variations in the galactic cosmic radiation are the primary cause for periods < 250 years, with minor contributions of terrestrial origin possible > 250 years. The spectral line for the Gleissberg (87-year) periodicity is narrow, indicating a stability of ≈ 0.5 %. The 9400-year record contains 26 Grand Minima (GM) similar to the Maunder Minimum, most of which occurred as sequences of 2 – 7 GM with intervals of 800 – 1200 years in between, in which there were no GM. The intervals between the GM sequences are characterised by high values of the modulation function. Periodicities < 150 years are observed in both the GM intervals and the intervals in between. The longer-period variations such as the de Vries (208-year) cycle have high amplitudes during the GM sequences and are undetectable in between. There are three harmonically related pairs of periodicities (65 and 130 years), (75 and 150 years), and (104 and 208 years). The long periodicities at 350, 510, and 708 years closely approximate 4, 6, and 8 times the Gleissberg period (87 years). The well-established properties of cosmic-ray modulation theory and the known dependence of the heliospheric magnetic field on the solar magnetic fields lead us to speculate that the periodicities evident in the paleo-cosmic-ray record are also present in the solar magnetic fields and in the solar dynamo. The stable, narrow natures of the Gleissberg and other periodicities suggest that there is a strong “frequency control” in the solar dynamo, in strong contrast to the variable nature (8 – 15 years) of the Schwabe (11-year) solar cycle.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Abreu, J.A., Beer, J., Steinhilber, F., Christl, M., Kubik, P.W.: 2012a, 10Be in ice cores and 14C in tree rings: separation of production and climate effects. Space Sci. Rev. 1 – 7. doi: 10.1007/s11214-011-9864-y .

  2. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012b, Planetary influence on solar activity evidenced by cosmogenic nuclides. Astron. Astrophys. 548, A88. doi: 10.105I/0004-6361/201219997 .

    ADS  Article  Google Scholar 

  3. Beer, J., McCracken, K.G., Abreu, J., Heikkila, U., Steinhilber, F.: 2011, Cosmogenic radionuclides as an extension of the neutron-monitor era into the past: potential and limitations. Space Sci. Rev. doi: 10.1007/s11214-011-9843-3 .

    Google Scholar 

  4. Beer, J., McCracken, K., von Steiger, R.: 2012, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments, Springer, Berlin. ISBN 978-3-642-14650-3.

    Book  Google Scholar 

  5. Caballero-Lopez, R.A., Moraal, H.: 2004, Limitations of the force field equation to describe cosmic-ray modulation. J. Geophys. Res. 109, A01101. doi: 10.1029/2003JA010098 .

    ADS  Article  Google Scholar 

  6. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7(3). http://www.livingreviews.org/lrsp-2010-3 .

  7. Dicke, D.H.: 1978, Is there a chronometer hidden deep in the Sun? Nature 276, 676 – 680.

    ADS  Article  Google Scholar 

  8. Forbush, S.E.: 1938, On world-wide changes in cosmic-ray intensity. Phys. Rev. 54(12), 975 – 988.

    ADS  Article  Google Scholar 

  9. Forbush, S.E.: 1954, World-wide cosmic-ray variations, 1937 – 1952. J. Geophys. Res. 59, 525 – 542.

    ADS  Article  Google Scholar 

  10. Gleeson, L.J., Axford, W.I.: 1968, Solar modulation of galactic cosmic-rays. Astrophys. J. 154, 1011 – 1026.

    ADS  Article  Google Scholar 

  11. Gleissberg, W.: 1958, The eighty-year sunspot cycle. J. Br. Astron. Assoc. 68, 148 – 152.

    Google Scholar 

  12. Gleissberg, W.: 1965, The eighty-year solar cycle in auroral frequency numbers. J. Br. Astron. Assoc. 75, 227 – 231.

    Google Scholar 

  13. Heikkila, U., Beer, J., Feichter, J.: 2008, Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder minimum using the ECHAM5-HAM general circulation. Model. Atmos. Chem. Phys. 8, 2797 – 2809.

    ADS  Article  Google Scholar 

  14. Jokipii, J.R.: 1991, Variations of the cosmic-ray flux with time. In: Sonett, C.P., Giampapa, H.S., Mathews, M.S. (eds.) The Sun in Time, Univ. Ariz. Press, Tucson, 205 – 220.

    Google Scholar 

  15. Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193 – 200.

    ADS  Article  Google Scholar 

  16. Knudsen, M.F, Riisager, P., Donadini, D., Snowball, I., Muscheler, R., Korhonen, B., Pesonen, L.J.: 2008, Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth Planet. Sci. Lett. 272, 319 – 329. doi: 10.1016/j.epsl.2008.04.048 .

    ADS  Article  Google Scholar 

  17. Knudsen, M.F., Riisager, P., Holm Jacobsen, B., Muscheler, R., Snowball, I., Seidenkrantz, M.S.: 2009, Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Geophys. Res. Lett. 36, L16701. doi: 10.1029/2009GL039439 .

    ADS  Article  Google Scholar 

  18. Lal, D.: 1987, 10Be in polar ice: data reflect changes in cosmic-ray flux or polar meteorology. Geophys. Res. Lett. 14, 785 – 788.

    ADS  Article  Google Scholar 

  19. Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439.

    ADS  Article  Google Scholar 

  20. Masarik, J., Beer, J.: 1999, Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 104, 12099 – 12111.

    ADS  Article  Google Scholar 

  21. Masarik, J., Beer, J.: 2009, An updated simulation of particle fluxes and cosmogenic production in the Earth’s atmosphere. J. Geophys. Res. 114, D11103.

    ADS  Article  Google Scholar 

  22. McCracken, K.G.: 2004, Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice. J. Geophys. Res. 109, A04101. doi: 10.1029/2003JA010060 .

    ADS  Article  Google Scholar 

  23. McCracken, K.G., Beer, J.: 2007, Long term changes in the cosmic-ray intensity at Earth, 1428 – 2005. J. Geophys. Res. 112, A10101. doi: 10.1029/2006JA012117 .

    ADS  Article  Google Scholar 

  24. McCracken, K., Beer, J., Steinhilber, F.: 2013, Evidence for planetary forcing of the cosmic ray intensity, and solar activity throughout the past 9400 years. Solar Phys. submitted

  25. McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F.: 2004, A phenomenological study of the long-term cosmic-ray modulation, 850 – 1950 AD. J. Geophys. Res. 109, A12103. doi: 10.1029/2004JA010685 .

    ADS  Article  Google Scholar 

  26. McCracken, K., Beer, J., Steinhilber, F., Abreu, J.: 2011, The heliosphere in time. Space Sci. Rev. doi: 10:1007/s11214-011-9843-3 .

    MATH  Google Scholar 

  27. Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G.M., Yiou, F., Kubik, P.W.: 2004, Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet. Sci. Lett. 219, 325 – 340.

    ADS  Article  Google Scholar 

  28. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128(3), 664 – 676.

    ADS  Article  Google Scholar 

  29. Parker, E.N.: 1965, The passage of energetic particles through interplanetary space. Planet. Space Sci. 13, 9 – 13.

    ADS  Article  Google Scholar 

  30. Peristykh, A.N., Damon, P.E.: 2003, Persistence of the Gleissberg 88-year solar cycle over the past ∼ 12 000 years: evidence from cosmogenic isotopes. J. Geophys. Res. 108(A1), SSH 1-1. doi: 10.1029/2002JA009390 .

    Article  Google Scholar 

  31. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeye, C.E.: 2009, Intcal09 and Marine09 radiocarbon age calibration curves, 0 – 50 000 years Cal Bp. Radiocarbon 51, 1111 – 1150.

    Google Scholar 

  32. Snowball, I., Muscheler, R.: 2007, Paleomagnetic intensity data: an Achilles heel of solar activity reconstructions. Holocene 17, 851 – 859. doi: 10.1177/0959683607080531 .

    Article  Google Scholar 

  33. Sonett, C.P.: 1984, Very long solar periods and the radiocarbon record. Rev. Geophys. 22, 239 – 254.

    ADS  Article  Google Scholar 

  34. Steinhilber, F., Abreu, J.A., Beer, J.: 2008. Solar modulation during the Holocene. Astrophys. Space Sci. Trans.. 4, 1 – 6.

    ADS  Article  Google Scholar 

  35. Steinhilber, F., Abreu, J.A., Beer, J., McCracken, K.G.: 2010, The interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. 115, A01104. doi: 10.1029/2009JA014193 .

    ADS  Article  Google Scholar 

  36. Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, H.: 2012, 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109. doi: 10.1073/pnas1118965109 .

  37. Svalgaard, L., Cliver, E.W.: 2010, Heliospheric magnetic field, 1835 – 2009. J. Geophys. Res. 115, A09111. doi: 10.1029/2009JA015069 .

    ADS  Article  Google Scholar 

  38. Usoskin, I.G., Mursala, K., Kovaltsov, G.A.: 2001, Heliospheric modulation of cosmic-rays and solar activity during the Maunder Minimum. J. Geophys. Res. 106, 16039 – 16046.

    ADS  Article  Google Scholar 

  39. Usoskin, I.G., Solanki, S.K., Taricco, C., Bhandari, N., Kovaltsov, G.A.: 2006, Long-term solar activity reconstructions: direct test by cosmogenic 44Ti in meteorites. Astron. Astrophys. 457, L25 – L28.

    ADS  Article  Google Scholar 

  40. Webber, W.R., Higbie, P.R.: 2010, A comparison of new calculations of 10Be production in the Earth’s polar atmosphere by cosmic-rays with 10Be concentration measurements in polar ice cores between 1939 and 2005 – A troubling lack of concordance, paper 1. arXiv:1003.4989 .

  41. Webber, W.R., Higbie, P.R., Webber, C.W.: 2010, A comparison of new calculations of the yearly 10Be production in the Earth’s polar atmosphere by cosmic rays with yearly 10Be measurements in multiple Greenland ice cores between 1939 and 1994 – A troubling lack of concordance, paper 2. arXiv:1004.2675 .

Download references

Acknowledgements

The research at the University of Maryland was supported by NSF grant 1050002. The Swiss component of this research was supported by NCCR Climate – Swiss climate research and by the Swiss National Science Foundation under grant CRSI122-130642 (FUPSOL). Support of KGMcC by the International Space Science Institute (ISSI) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. G. McCracken.

Appendix: Terrestrial Contributions to the Variability of Δ14C

Appendix: Terrestrial Contributions to the Variability of Δ14C

Global-scale climate change affects the interchange and storage of 14C in the atmosphere and the oceans, and hence the concentration in tree rings, which leads to long-term changes as a consequence of climate change (Beer et al. 2011). Mathematical models of the carbon cycle show that this effect is weak (see Section 13.5 of Beer, McCracken, and von Steiger, 2012). As an example, we considered changes in the two most important contributors: the gas-exchange rate between the atmosphere and the upper-most portion of the oceans [k am], and the eddy diffusion constant [K] that quantifies the mixing of the water below the surface layer (Chapter 13.5.3, Beer, McCracken, and von Steiger, 2012). Variations in k am are mainly controlled by the long-term climate-driven changes in the surface winds and by the extent of sea ice. During the past 60 years, the annual mean area of sea ice has varied by ≈ 0.8 % peak-to-peak (compared to the total area of the Earth’s oceans), implying a similar variation in k am. To allow for winds and other factors we quadrupled this to an ≈ 3.2 % peak-to-peak change in k am as a consequence of climate change in correlation with the Gleissberg cycle. Muscheler et al. (2004) used a 30 % change in K to model the carbon-cycle effects during the Younger Dryas transition from the glacial to inter-glacial epochs, and we used a tenth of that for the much smaller changes expected during the Holocene. Using these estimates in a box diffusion carbon-cycle model yields an amplitude of 4.5(1−eT/(2⋅460)) ‰ for the variation in Δ14C, where T is the period of the climate change in question. For the Gleissberg periodicity, this yields an amplitude of 0.4 ‰. The observed Gleissberg variation in Δ14C is approximately 7 ‰. That is, rather extreme assumptions regarding the variability in the carbon-cycle can only account for ≈ 5.7 % of the observed amplitude of the Gleissberg cycle in Δ14C. The exponential term in the above equation quantifies the rapidity with which the changes in k am and K attain equilibrium, and this clearly means that the longer-period climatic changes will have a greater effect than we derived in the above example.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McCracken, K.G., Beer, J., Steinhilber, F. et al. A Phenomenological Study of the Cosmic Ray Variations over the Past 9400 Years, and Their Implications Regarding Solar Activity and the Solar Dynamo. Sol Phys 286, 609–627 (2013). https://doi.org/10.1007/s11207-013-0265-0

Download citation

Keywords

  • Cosmic-rays
  • Cosmic-ray modulation
  • Cosmogenic 10Be and 14C
  • Solar periodicities
  • Grand Minima
  • Solar dynamo