Advertisement

Solar Physics

, Volume 281, Issue 1, pp 507–532 | Cite as

Solar Cycle Predictions (Invited Review)

  • W. Dean Pesnell
THE SUN 360

Abstract

Solar cycle predictions are needed to plan long-term space missions, just as weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on low-Earth orbit spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as the reduced propellant load is consumed more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5 – 20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations of how those predictions could be made more accurate in the future are discussed.

Keywords

Solar cycle Predictions 

Notes

Acknowledgements

This work was supported by NASA’s Solar Dynamics Observatory at the Goddard Space Flight Center.

References

  1. Aguirre, L., Letellier, C., Maquet, J.: 2008, Forecasting the time series of sunspot numbers. Solar Phys. 249, 103 – 120. doi: 10.1007/s11207-008-9160-5. ADSCrossRefGoogle Scholar
  2. Ahluwalia, H.S.: 2008, Development of solar activity cycle 24: Some comments. 37th COSPAR Abstr. 37, 36. Google Scholar
  3. Ashrafi, S., Roszman, L.: 1992, Detecting and disentangling nonlinear structure from solar flux time series. NASA STI/Recon Technical Report N92-28871 92, 1 – 11. Google Scholar
  4. Badalyan, O.G., Obridko, V., Sykora, N.J.: 2001, Brightness of the coronal green line and prediction for activity cycles 23 and 24. Solar Phys. 199, 421 – 435. ADSCrossRefGoogle Scholar
  5. Baranovski, A.L., Clette, F., Nollau, V.: 2008, Nonlinear solar cycle forecasting: Theory and perspectives. Ann. Geophys. 26, 231 – 241. ADSCrossRefGoogle Scholar
  6. Bassingthwaighte, J.B., Liebovitch, L.S., West, B.J.: 1994, Fractal Physiology, Oxford University Press, New York. Google Scholar
  7. Biesecker, D., the Solar Cycle 24 Prediction Panel: 2007, Consensus statement of the solar cycle 24 prediction panel, released March 2007. http://www.swpc.noaa.gov/SolarCycle/SC24/.
  8. Black, F., Scholes, M.: 1973, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637 – 654. doi: 10.1086/260062. CrossRefGoogle Scholar
  9. Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, G., Rujždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855 – 861. doi: 10.1051/0004-6361:200810862. ADSCrossRefGoogle Scholar
  10. Brown, G.: 1986, Working Group “A” report: Long-term solar activity predictions. In: Simon, P.A., Heckman, G., Shea, M.A. (eds.) Solar-Terrestrial Predictions, 1 – 7. Google Scholar
  11. Brown, G.M.: 1992, The peak of solar cycle 22 – Predictions in retrospect. Ann. Geophys. 10, 453 – 461. ADSGoogle Scholar
  12. Bushby, P.J., Tobias, S.M.: 2007, On predicting the solar cycle using mean-field models. Astrophys. J. 661, 1289 – 1296. doi: 10.1086/516628. ADSCrossRefGoogle Scholar
  13. Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801 – 811. doi: 10.1086/512049. ADSCrossRefGoogle Scholar
  14. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Liv. Rev. Solar Phys. 7(3). http://www.livingreviews.org/lrsp-2010-3.
  15. Charvátová, I.: 2009, Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840 – 1905 and 1980 – 2045. New Astron. 14, 25 – 30. doi: 10.1016/j.newast.2008.04.005. ADSCrossRefGoogle Scholar
  16. Chatfield, C.: 1978, The Holt–Winters forecasting procedure. J. Roy. Stat. Soc., Ser. C 27(3), 264 – 279. http://www.jstor.org/stable/2347162. Google Scholar
  17. Chatfield, C., Yar, M.: 1988, Holt–Winters forecasting: Some practical issues. J. Roy. Stat. Soc., Ser. D 37(2), 129 – 140. http://www.jstor.org/stable/2348687. Google Scholar
  18. Chopra, P., Dabas, R.: 2006, Prediction of maximum amplitude of the next solar cycle 24 using modified precursor method. 36th COSPAR Abstr. 36, 909. Google Scholar
  19. Choudhuri, A., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. doi: 10.1103/PhysRevLett.98.131103. ADSCrossRefGoogle Scholar
  20. Chumak, O.: 2005, Self-similar and self-affine structures in the observational data on solar activity. Astron. Astrophys. Trans. 24, 93 – 99. doi: 10.1080/10556790500126472. ADSCrossRefGoogle Scholar
  21. Clilverd, M., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.: 2006, Predicting solar cycle 24 and beyond. Space Weather 4, S09005. doi: 10.1029/2005SW000207. CrossRefGoogle Scholar
  22. Crosson, I.J., Binder, P.M.: 2009, Chaos-based forecast of sunspot cycle 24. J. Geophys. Res. 114, 1108 – 1112. doi: 10.1029/2008JA013859. CrossRefGoogle Scholar
  23. Dabas, R.S., Sharma, K., Das, R.M., Pillai, K.G.M., Chopra, P., Sethi, N.K.: 2008, A prediction of solar cycle 24 using a modified precursor method. Solar Phys. 250, 171 – 181. doi: 10.1007/s11207-008-9200-1. ADSCrossRefGoogle Scholar
  24. de Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349 – 366. ADSCrossRefGoogle Scholar
  25. Dikpati, M.: 2008, Predicting cycle 24 using various dynamo-based tools. Ann. Geophys. 26, 259 – 267. doi: 10.5194/angeo-26-259-2008. http://www.ann-geophys.net/26/259/2008/. ADSCrossRefGoogle Scholar
  26. Dikpati, M., de Toma, G., Gilman, P.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. doi: 10.1029/2005GL025221. CrossRefGoogle Scholar
  27. Du, Z., Du, S.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437. ADSCrossRefGoogle Scholar
  28. Du, Z.L., Wang, H.N., Zhang, L.Y.: 2008, A running average method for predicting the size and length of a solar cycle. Chin. J. Astron. Astrophys. 8, 477 – 488. doi: 10.1088/1009-9271/8/4/12. ADSCrossRefGoogle Scholar
  29. Du, Z., Wang, H., He, H., Zhang, L., Li, R., Cui, Y.: 2008, A summary of the applications of a weighted average method determining times of solar cycle extrema. Adv. Space Res. 42, 1457 – 1463. doi: 10.1016/j.asr.2007.06.072. ADSCrossRefGoogle Scholar
  30. Duhau, S.: 2003, An early prediction of maximum sunspot number in solar cycle 24. Solar Phys. 213, 203 – 212. ADSCrossRefGoogle Scholar
  31. Echer, E., Rigozo, N., Nordemann, D., Vieira, L.: 2004, Prediction of solar activity on the basis of spectral characteristics of sunspot number. Ann. Geophys. 22, 2239 – 2243. doi: 1432-0576/ag/2004-22-2239. ADSCrossRefGoogle Scholar
  32. Euler, H.J., Smith, S.: 2006, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance. Technical report, NASA, Marshall Space Flight Center. http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf. File dated September 2006.
  33. Fyodorov, M.V., Klimenko, V.V., Dovgalyuk, V.V.: 1996, Sunspot minima dates: A secular forecast. Solar Phys. 165, 193 – 199. doi: 10.1007/BF00149098. ADSCrossRefGoogle Scholar
  34. Gholipour, A., Lucasa, C., Araabia, B., Shafiee, M.: 2005, Solar activity forecast: Spectral analysis and neurofuzzy prediction. J. Atmos. Solar-Terr. Phys. 67, 595 – 603. ADSCrossRefGoogle Scholar
  35. Gilman, D.L., Fuglister, F.J., Mitchell, J.: 1963, On the power spectrum of “red noise”. J. Atmos. Sci. 20, 182 – 184. ADSCrossRefGoogle Scholar
  36. González Hernández, I., Hill, F., Lindsey, C.: 2007, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382 – 1389. doi: 10.1086/521592. ADSCrossRefGoogle Scholar
  37. Graham, B.: 2003, The Intelligent Investor, Revised edn., HarperCollins, New York. Google Scholar
  38. Greenkorn, R.A.: 2009, Analysis of sunspot activity cycles. Solar Phys. 255, 301 – 323. doi: 10.1007/s11207-009-9331-z. ADSCrossRefGoogle Scholar
  39. Hamid, R., Galal, A.: 2006, Preliminary prediction of the strength of the 24th 11-year solar cycle. In: Bothmer, V., Hady, A.A. (eds.) Solar Activity and Its Magnetic Origin, Proc. IAU Symp. 233, Cambridge Univ. Press, Cambridge, 413 – 416. Google Scholar
  40. Hathaway, D.H.: 2010, Does the current minimum validate (or invalidate) cycle prediction methods? In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pac., San Francisco, 307 – 311. Google Scholar
  41. Hathaway, D.H., Wilson, R.M.: 2004, What the sunspot record tells us about space climate. Solar Phys. 224, 5 – 19. ADSCrossRefGoogle Scholar
  42. Hathaway, D.H., Wilson, R.M.: 2006, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33, L18101. doi: 10.1029/2006GL027053. ADSCrossRefGoogle Scholar
  43. Hathaway, D.H., Wilson, R.M., Reichman, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 375 – 388. CrossRefGoogle Scholar
  44. He, H., Wang, H., Du, Z., Li, R., Cui, Y., Zhang, L., He, Y.: 2008, Solar activity prediction studies and services in NAOC. Adv. Space Res. 42, 1450 – 1456. doi: 10.1016/j.asr.2007.02.068. ADSCrossRefGoogle Scholar
  45. Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P., Obermayer, K.: 1999, Neural networks in economics: Background, applications, and new developments. Adv. Comput. Econ. 11, 169 – 196. CrossRefGoogle Scholar
  46. Hindman, B.W., Gizon, L., Thomas, L., Duvall, J., Haber, D.A., Toomre, J.: 2004, Comparison of solar subsurface flows assessed by ring and time-distance analyses. Astrophys. J. 613, 1253 – 1262. ADSCrossRefGoogle Scholar
  47. Hiremath, K.: 2008, Prediction of solar cycle 24 and beyond. Astrophys. Space Sci., 45 – 49. doi: 10.1007/s10509-007-9728-9.
  48. Horstman, M.: 2005, Varying solar flux models and their effect on the future debris environment projection. Orbital Debris Q. News 9, 4 – 5. Google Scholar
  49. Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., Thompson, M.J.: 2009, A note on the torsional oscillation at solar minimum. Astrophys. J. Lett. 701, L87 – L90. doi: 10.1088/0004-637X/701/2/L87. ADSCrossRefGoogle Scholar
  50. Hurst, H.: 1951, Long-term storage of reservoirs: an experimental study. Trans. Am. Soc. Civ. Eng. 116, 770 – 799. Google Scholar
  51. Ilonidis, S., Zhao, J., Kosovichev, A.: 2011, Detection of emerging sunspot regions in the solar interior. Science 333(6045), 993 – 996. doi: 10.1126/science.1206253. http://www.sciencemag.org/content/333/6045/993.abstract. ADSCrossRefGoogle Scholar
  52. Jain, R.: 2006, Prediction of the amplitude in sunspot cycle 24. 36th COSPAR Abstr. 36, 642. Google Scholar
  53. Janssens, J.: 2005, Solar cycle 24: Overview of predictions on the start and amplitude of a new solar cycle. http://members.chello.be/j.janssens/SC24pred.pdf.
  54. Janssens, J.: 2006, Solar cycle 24: Overview of predictions on the start and amplitude of a new solar cycle. http://members.chello.be/j.janssens/SC24.html.
  55. Javaraiah, J.: 2007, North-south asymmetry in solar activity: Predicting the amplitude of the next solar cycle. Mon. Not. Roy. Astron. Soc. Lett., L34 – L38. doi: 10.1111/j.1745-3933.2007.00298.x.
  56. Javaraiah, J.: 2008, Predicting the amplitude of a solar cycle using the north–south asymmetry in the previous cycle: II. An improved prediction for solar cycle 24. Solar Phys. 252, 419 – 439. doi: 10.1007/s11207-008-9269-6. ADSCrossRefGoogle Scholar
  57. Joselyn, J., Anderson, J., Coffey, H., Harvey, K., Hathaway, D., Heckman, G., Hildner, E., Mende, W., Schatten, K., Thompson, R., Thomson, A., White, O.: 1997, Panel achieves consensus prediction of solar cycle 23. Eos Trans. AGU 78, 205 – 212. ADSCrossRefGoogle Scholar
  58. Kane, R.: 1999, Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Solar Phys. 189, 217 – 224. ADSCrossRefGoogle Scholar
  59. Kane, R.: 2007a, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 246, 487 – 493. doi: 10.1007/s11207-007-9059-6. ADSCrossRefGoogle Scholar
  60. Kane, R.: 2007b, Solar cycle predictions based on extrapolation of spectral components: An update. Solar Phys. 243, 205 – 217. ADSCrossRefGoogle Scholar
  61. Kane, R.: 2008, How useful is the Waldmeier effect for prediction of a sunspot cycle? J. Atmos. Solar-Terr. Phys. 70, 1533 – 1540. doi: 10.1016/j.jastp.2008.04.010. ADSCrossRefGoogle Scholar
  62. Kennewell, J., Patterson, G.: 2006, Prediction, quoted in Pesnell (2008). Google Scholar
  63. Khramova, M., Krasotkin, S., Kononovich, E.: 2002, New aspects of solar activity forecast. In: Sawaya-Lacoste, H. (ed.) Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference SP-477. ESA, Noordwijk, 229 – 232. Google Scholar
  64. Kilcik, A., Anderson, C.N.K., Rozelot, J.P., Ye, H., Sugihara, G., Ozguc, A.: 2009, Nonlinear prediction of solar cycle 24. Astrophys. J. 693, 1173 – 1177. http://arxiv.org/pdf/0811.1708. ADSCrossRefGoogle Scholar
  65. Kim, M.Y., Wilson, J., Cucinotta, F.: 2006, A solar cycle statistical model for the projection of space radiation environment. Adv. Space Res. 37, 1741 – 1748. doi: 10.1016/j.asr.2004.11.036. ADSCrossRefGoogle Scholar
  66. King-Hele, D.G.: 1963, Prediction of future sunspot cycles. Nature 199, 226 – 227. doi: 10.1038/199226a0. ADSCrossRefGoogle Scholar
  67. King-Hele, D.G.: 1966, Prediction of the dates and intensities of the next two sunspot maxima. Nature 209(5020), 285 – 286. doi: 10.1038/209285a0. ADSCrossRefGoogle Scholar
  68. Kitiashvili, I., Kosovichev, A.: 2008, Prediction of sunspot cycles by data assimilation method. Technical report, Stanford Univ., Stanford, CA. http://arxiv.org/abs/0807.3284.
  69. Kontor, N.N.: 2006, Statistics-based regular extrapolation, quoted in Pesnell (2008). Google Scholar
  70. Kryachko, A., Nusinov, A.: 2008, Standard prediction of solar cycles. Geomagn. Aeron. 48, 145 – 148. doi: 10.1007/s11478-008-2002-7. ADSCrossRefGoogle Scholar
  71. Lantos, P.: 2006, The skewness of a solar cycle as a precursor of the amplitude of the next. Solar Phys. 229, 373 – 386. doi: 10.1007/s11207-006-0128-z. ADSCrossRefGoogle Scholar
  72. Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291. doi: 10.1051/0004-6361:20000547. ADSCrossRefGoogle Scholar
  73. Lo, A.W., Mackinlay, A.C.: 2002, A Non-random Walk Down Wall Street, 5th edn., Princeton University Press, Princeton. Google Scholar
  74. Lynch, P.: 2008a, The ENIAC forecasts: A re-creation. Bull. Am. Meteorol. Soc. 89, 45 – 55. ADSCrossRefGoogle Scholar
  75. Lynch, P.: 2008b, The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227, 3431 – 3444. doi: 10.1016/j.jcp.2007.02.034. MathSciNetADSzbMATHCrossRefGoogle Scholar
  76. Mandelbrot, B.B., Wallis, J.R.: 1969, Some long-run properties of geophysical records. Water Resour. Res. 5, 321 – 340. ADSCrossRefGoogle Scholar
  77. Mariş, G., Popescu, M., Beşliu, D.: 2004, Solar cycle 23 analysis. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, Proc. IAU Symp. 233, Cambridge Univ. Press, Cambridge, 127 – 128. Google Scholar
  78. Maris, G., Oncica, A.: 2006, Solar cycle 24 forecasts. Sun Geosp. 1. http://www.stil.bas.bg/IHY/forms/SUN_GEO200601.html.
  79. McIntosh, P., Brown, G., Buhmann, R., Clark, T., Fougere, P., Hunter, H., Lincoln, J., Sargent, I., Timothy, J., Lin, Y.: 1979, Long-term solar activity predictions. In: Donnelly, R. (ed.) NOAA Solar-Terrestrial Predictions Proceedings 2, 246 – 257. Google Scholar
  80. Miyahara, H.: 2008, Prediction based on radiocarbon record, quoted in Pesnell (2008). Google Scholar
  81. Nandy, D., Munoz-Jaramillo, A., Martens, P.C.H.: 2011, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471(7336), 80 – 82. doi: 10.1038/nature09786. ADSCrossRefGoogle Scholar
  82. Nevanlinna, H.: 2007, Geomagnetic precursor based on aa, quoted in Pesnell (2008). Google Scholar
  83. Niehaus, K.O., Euler, Jr., H.C., Vaughan, W.W.: 1996, Statistical technique for intermediate and long-range estimation of 13-month smoothed solar flux and geomagnetic index. NASA Technical Memorandom 4759, NASA. http://sail.msfc.nasa.gov/tm4759.pdf.
  84. NOAA: 2006, List of sunspot maximum and minimum 1610-present. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/maxmin.new.
  85. Obridko, V.: 2008, Average of four separate precursor predictions, quoted in Pesnell (2008). Google Scholar
  86. Obridko, V., Shelting, B.: 2008, On prediction of the strength of the 11-year solar cycle. Solar Phys. 248, 191 – 202. doi: 10.1007/s11207-008-9138-3. ADSCrossRefGoogle Scholar
  87. Ogurtsov, M.G.: 2005, On the possibility of forecasting the Sun’s activity using radiocarbon solar proxy. Solar Phys. 231, 167 – 176. doi: 10.1007/s11207-005-8775-z. ADSCrossRefGoogle Scholar
  88. Ohl, A.I.: 1966, Wolf’s number prediction for the maximum of the cycle 20. Soln. Dannye 12, 84 – 85. Google Scholar
  89. Ohl, A.I., Ohl, G.I.: 1979, A new method of very long-term prediction of solar activity. In: Donnelly, R. (ed.) Solar-Terrestrial Predictions Proceedings 2, NOAA/Space Environment Laboratory, Boulder, 258 – 263. Google Scholar
  90. Osherovich, V., Fainberg, J.: 2008, New method of solar maximum prediction with application to the next solar cycle. EoS Trans. AGU 89, Abstract SH13A-1505. Google Scholar
  91. Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252, 209 – 220. doi: 10.1007/s11207-008-9252-2. ADSCrossRefGoogle Scholar
  92. Pesnell, W.D.: 2009, Predicting solar cycle 24 with geomagnetic precursors. In: AAS/Solar Physics Division Meeting 40, #11.05. Google Scholar
  93. Pesnell, W.: 2011, Predicting solar cycle 24 using Ap and F 10.7 as a geomagnetic precursor pair. Solar Phys., submitted. Google Scholar
  94. Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6. ADSGoogle Scholar
  95. Podladchikova, T., Lefebvre, B., Van der Linden, R.: 2006, Peak sunspot number for solar cycle 24, quoted in Pesnell (2008). Google Scholar
  96. Prochasta, R.: 2006, Climatological prediction submitted to panel, quoted in Pesnell (2008). Google Scholar
  97. Qian, B., Rasheed, K.: 2004, Hurst exponent and financial market predictability. In: Hamza, M. (ed.) Financial Engineering and Applications (FEA 2004), November 8 – 10, 2004, MIT, Cambridge, 203 – 209. http://qianbo.myweb.uga.edu/research/Hurst.pdf. Google Scholar
  98. Quassim, M.S., Attia, A.F., Elminir, H.K.: 2007, Forecasting the peak amplitude of the 24th and 25th sunspot cycles and accompanying geomagnetic activity. Solar Phys. 243, 253 – 258. doi: 10.1007/s11207-007-0447-8. ADSCrossRefGoogle Scholar
  99. Rabin, D.: 2007, Forecast of the amplitude of solar cycle 24 based on the disturbed days precursor. Bull. Am. Astron. Soc. 210, 92.05. ADSGoogle Scholar
  100. Roth, M.: 2006, ARMA prediction of solar cycle 24, quoted in Pesnell (2008). Google Scholar
  101. Sargent, H.H. III: 1978, A prediction for the next sunspot cycle. In: Vehicular Technology Conference, 1978. 28th IEEE 28, 490 – 496. doi: 10.1109/VTC.1978.1622589. CrossRefGoogle Scholar
  102. Schatten, K.: 2005, Fair space weather for solar cycle 24. Geophys. Res. Lett. 32, L21106. doi: 10.1029/2005GL024363. ADSCrossRefGoogle Scholar
  103. Schatten, K.H., Pesnell, W.D.: 1993, An early solar dynamo prediction: Cycle 23 is approximately cycle 22. Geophys. Res. Lett. 20, 2275 – 2278. doi: 10.1029/93GL02431. ADSCrossRefGoogle Scholar
  104. Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411 – 414. ADSCrossRefGoogle Scholar
  105. Schepers, H.E., van Beek, J.H.G.M., Bassingthwaighte, J.B.: 1992, Comparison of four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med. Biol. 11, 57 – 64. CrossRefGoogle Scholar
  106. Schrijver, C.J., Title, A.M.: 2011, Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J. Geophys. Res. 116, A04108. doi: 10.1029/2010JA016224. ADSCrossRefGoogle Scholar
  107. Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233 – 234. ADSCrossRefGoogle Scholar
  108. Sello, S.: 2003, Solar cycle activity: A preliminary prediction for cycle #24. Astron. Astrophys. 410, 691 – 693. doi: 10.1051/0004-6361:20031295. ADSCrossRefGoogle Scholar
  109. Simonsen, I., Hansen, A., Nes, O.M.: 1998, Determination of the Hurst exponent by use of wavelet transforms. Phys. Rev. E 58, 2779 – 2787. doi: 10.1103/PhysRevE.58.2779. ADSCrossRefGoogle Scholar
  110. Solanki, S.K., Krivova, N.A.: 2011, Analyzing solar cycles. Science 334(6058), 916 – 917. doi: 10.1126/science.1212555. http://www.sciencemag.org/content/334/6058/916.short. ADSCrossRefGoogle Scholar
  111. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature 431(7012), 1084 – 1087. doi: 10.1038/nature02995. ADSCrossRefGoogle Scholar
  112. Suggs, R.J., Euler, H.J., Smith, S.: 2011, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance. Technical report, NASA, Marshall Space Flight Center. http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf. File dated November 2011.
  113. Suyal, V., Prasad, A., Singh, H.P.: 2009, Nonlinear time series analysis of sunspot data. Solar Phys. 260, 441 – 449. doi: 10.1007/s11207-009-9467-x. ADSCrossRefGoogle Scholar
  114. Svalgaard, L., Cliver, E., Kamide, Y.: 2005, Cycle 24: The smallest sunspot cycle in 100 years? Geophys. Res. Lett. 32. doi: 10.1029/2004GL021664.
  115. Thompson, R.J.: 2008, Prediction for cycle 24 using minimum value of Ap (12-month average), quoted in Pesnell (2008). Google Scholar
  116. Tlatov, A.: 2006, Indices of solar activity minimum of sunspot cycles and prediction solar cycle 24, quoted in Pesnell (2008). Google Scholar
  117. Tritakis, V., Mavromichalaki, H., Giouvanellis, G.: 2006, Prediction of basic elements of the forthcoming solar cycles 24 and 25 (years 2005 – 2027). In: Solomos, N. (ed.) Recent Advances in Astronomy and Astrophysics: 7th Intern. Conf. Hellenic Astron. Soc., AIP CP-848, 154 – 162. doi: 10.1063/1.2347972. Google Scholar
  118. Tsirulnik, L., Kuznetsova, T., Oraevsky, V.: 1997, Forecasting the 23rd and 24th solar cycles on the basis of MGM spectrum. Adv. Space Res. 20, 2369 – 2372. doi: 10.1016/S0273-1177(97)00909-5. ADSCrossRefGoogle Scholar
  119. Vaquero, J.M., Trigo, R.M.: 2008, Can the solar cycle amplitude be predicted using the preceding solar cycle length? Solar Phys. 250, 199 – 206. doi: 10.1007/s11207-008-9211-y. ADSCrossRefGoogle Scholar
  120. Volobuev, D., Makarenko, N.: 2008, Forecast of the decadal average sunspot number. Solar Phys. 249, 121 – 133. doi: 10.1007/s11207-008-9167-y. ADSCrossRefGoogle Scholar
  121. Wang, J.L., Gong, J.C., Liu, S.Q., Le, G.M., Sun, J.L.: 2002, The prediction of maximum amplitudes of solar cycles and the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 2, 557 – 562. ADSCrossRefGoogle Scholar
  122. Wang, J.L., Zong, W.G., Le, G.M., Zhao, H.J., Tang, Y.Q., Zhang, Y.: 2009, Letters: Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping. Res. Astron. Astrophys. 9, 133 – 136. doi: 10.1088/1674-4527/9/2/002. ADSCrossRefGoogle Scholar
  123. Wang, Y.M., Sheeley, N.R.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. 694, L11 – L15. doi: 10.1088/0004-637X/694/1/L11. ADSCrossRefGoogle Scholar
  124. Watari, S.: 2008, Forecasting solar cycle 24 using the relationship between cycle length and maximum sunspot number. Space Weather 6, S12003. doi: 10.1029/2008SW000397. ADSCrossRefGoogle Scholar
  125. Wilks, D.: 1995, Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego. Google Scholar
  126. Withbroe, G.L.: 1989, Solar activity cycle – History and predictions. J. Spacecr. Rockets 26, 394 – 402. doi: 10.2514/3.26085. ADSCrossRefGoogle Scholar
  127. Xu, T., Wu, J., Wu, Z.S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys. 8, 337 – 342. ADSCrossRefGoogle Scholar
  128. Yule, G.: 1927, VII. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot number. Phil. Trans. Roy. Soc. London A 226, 267 – 298. ADSzbMATHCrossRefGoogle Scholar

Copyright information

© US government 2012

Authors and Affiliations

  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations