Skip to main content

Advertisement

Log in

Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet Sun, using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard Hinode. Line profiles of Fe i 557.6 nm were recorded by the Narrow-band Filter Imager (NFI) on a 82″×82″ FOV during 75 min with a time step of 28.75 s and 0.08″ pixel size. Vertical velocities were computed at three atmospheric levels (80, 130, and 180 km) using the bisector technique, allowing the determination of energy flux to be made in the range 3 – 10 mHz using two complementary methods (Hilbert transform and Fourier power spectrum). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. We found that the net energy flux is upward. In the range 3 – 10 mHz, a full FOV space and time averaged flux of 2700 W m−2 (lower layer 80 – 130 km) and 2000 W m−2 (upper layer 130 – 180 km) is concentrated in less than 1 % of the solar surface in the form of narrow (0.3″) AE. Their total duration (including rise and decay) is of the order of 103 s. Inside each AE, the mean flux is 1.6×105 W m−2 (lower layer) and 1.2×105 W m−2 (upper). Each event carries an average energy (flux integrated over space and time) of 2.5×1019 J (lower layer) to 1.9×1019 J (upper). More than 106 events could exist permanently on the Sun, with a birth and decay rate of 3500 s−1. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Altrock, R.C., November, L.J., Simon, G.W., Milkey, R.W., Worden, S.P.: 1975, Solar Phys. 433, 33.

    Article  ADS  Google Scholar 

  • Bello González, N., Flores Soriano, M., Kneer, F., Okunev, O.: 2009, Astron. Astrophys. 508, 941.

    Article  ADS  Google Scholar 

  • Bello González, N., Flores Soriano, M., Kneer, F., Okunev, O., Schukina, N.: 2010a, Astron. Astrophys. 522, A31.

    Article  ADS  Google Scholar 

  • Bello González, N., Franz, N., Martinez Pillet, V., Bonet, J.A., Solanki, S.K., del Toro Iniesta, J.C., et al.: 2010b, Astrophys. J. Lett. 723, L134.

    Article  ADS  Google Scholar 

  • Berilli, F., Consolini, G., Pietropaolo, E., Caccin, B., Penza, V., Lepreti, F.: 2002, Astron. Astrophys. 381, 253.

    Article  ADS  Google Scholar 

  • Brown, T.M.: 1991, Astrophys. J. 371, 396.

    Article  ADS  Google Scholar 

  • Gingerich, O., Noyes, R.W., Kalkofen, W., Cuny, Y.: 1971, Solar Phys. 18, 347.

    Article  ADS  Google Scholar 

  • Goode, P., Gough, D., Kosovichev, A.: 1992, Astrophys. J. 387, 707.

    Article  ADS  Google Scholar 

  • Ichimoto, K., Tsuneta, S., Suematsu, Y., Shimizu, T., Otsubo, M., Kato, Y., et al.: 2005, In: Mather, J.C. (ed.) Optical, Infrared, and Millimeter Space Telescopes, Proc. SPIE 5487, 1142.

    Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Astrophys. J. 333, 427.

    Article  ADS  Google Scholar 

  • Rast, M.P.: 1999, Astrophys. J. 524, 462.

    Article  ADS  Google Scholar 

  • Rimmele, T.R., Goode, P.R., Harold, E., Stebbins, R.T.: 1995, Astrophys. J. Lett. 444, L119.

    Article  ADS  Google Scholar 

  • Roudier, T., Lignières, F., Rieutord, M., Brandt, P.N., Malherbe, J.M.: 2003, Astron. Astrophys. 409, 299.

    Article  ADS  Google Scholar 

  • Rutten, R.J., van Veelen, B., Sütterlin, P.: 2008, Solar Phys. 251, 533.

    Article  ADS  Google Scholar 

  • Shelyag, S., Erdélyi, R., Thompson, M.J.: 2006, Astrophys. J. 651, 576.

    Article  ADS  Google Scholar 

  • Skartlien, R., Stein, R.F., Nordlund, A.: 2000, Astrophys. J. 541, 468.

    Article  ADS  Google Scholar 

  • Stebbins, R., Goode, P.R.: 1987, Solar Phys. 110, 237.

    Article  ADS  Google Scholar 

  • Stein, R.F., Nordlund, A.: 2001, Astrophys. J. 546, 585.

    Article  ADS  Google Scholar 

  • Stein, R.F., Georgobiani, D., Trampedach, R., Ludwig, H., Nordlund, A.: 2004, Solar Phys. 220, 229.

    Article  ADS  Google Scholar 

  • Strous, L.H., Goode, P.R., Rimmele, T.R.: 2000, Astrophys. J. 535, 1000.

    Article  ADS  Google Scholar 

  • Suematsu, Y., Tsuneta, S., Ichimoto, K., Shimizu, T., Otsubo, M., Katsukawa, Y., et al.: 2008, Solar Phys. 249, 197.

    Article  ADS  Google Scholar 

  • Title, A.M., Tarbell, T.D., Topka, K.P., Ferguson, S.H., Shine, R.A., The SOUP team: 1989, Astrophys. J. 336, 475.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for helpful comments and suggestions and to R. Stein for useful hints. We are also indebted to the Hinode team for the possibility to use their data. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (U.K.), NASA, ESA, and NSC (Norway).

This work was supported by the Centre National de la Recherche Scientifique (C.N.R.S., UMR 8109 and 5572) and by the Programme National Soleil Terre (P.N.S.T.), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Malherbe.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 29.7 MB)

(MPG 6.5 MB)

(MPG 6.5 MB)

(MPG 6.5 MB)

(MPG 6.5 MB)

(MPG 6.5 MB)

Appendix

Appendix

In order to compute the complex signal \(V(t) = v(t) + \mathrm{i}\underline{v}(t)\), we used the temporal FFT together with the following properties of the Hilbert transform (HT). Given an observed signal v(t), the HT \(\underline{v}(t)\) is given by

$$\underline{v}(t) = h(t) \star v(t),$$

where ⋆ denotes the convolution product and \(h(t)= \frac{1}{\pi t}\).

For a sinusoidal signal of the form v(t)∝cos(ωt+φ), the HT is simply \(\underline{v}(t) \propto\sin(\omega t + \varphi)\), so that in this case V(t)∝exp[i(ωt+φ)].

The easiest way to get \(\underline{v}(t)\) is to use the Fourier transform (FT with u denoting the temporal frequency):

$$\mathrm{FT}_{\underline{v}}(u) = \mathrm{FT}_{h}(u)\mathrm{FT}_{v}(u).$$

It can easily be shown that

$$\mathrm{FT}_{h}(u) = - \mathrm{i} \operatorname{sgn}(u),$$

where \(\operatorname{sgn}(u) \) is the sign function, +1 for u>0, 0 for u=0 and −1 for u<0.

As a consequence, the FT of the complex signal \(V(t) = v(t) + \mathrm{i}\underline{v}(t)\) is given by

$$\mathrm{FT}_{V}(u) = \mathrm{FT}_{v}(u) + \mathrm{i}\mathrm{FT}_{h}(u) \mathrm{FT}_{v}(u) =\mathrm{FT}_{v}(u) \bigl( 1 + \operatorname{sgn}(u) \bigr) .$$

This expression reduces simply to

  1. i)

    u<0,FT V (u)=0,

  2. ii)

    u=0,FT V (u)=FT v (u),

  3. iii)

    u>0,FT V (u)=2FT v (u).

We first computed the temporal FT of the observed signal v(t); in order to get the FT of the complex velocity \(V(t) = v(t) + \mathrm{i}\underline{v}(t)\), values corresponding to negative frequencies were eliminated and values corresponding to positive frequencies were doubled. Finally, the complex velocity \(V(t) = v(t) + \mathrm{i}\underline{v}(t)\) was derived from the inverse FT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malherbe, JM., Roudier, T., Rieutord, M. et al. Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI Observations. Sol Phys 278, 241–256 (2012). https://doi.org/10.1007/s11207-012-9954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9954-3

Keywords

Navigation