Skip to main content
Log in

The Measurement of Solar Diameter and Limb Darkening Function with the Eclipse Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The total solar irradiance varies over a solar cycle of 11 years and maybe over cycles of longer periods. Is the solar diameter variable over time too? A discussion of the solar diameter and its variations must be linked to the limb darkening function (LDF). We introduce a new method to perform high-resolution astrometry of the solar diameter from the ground, through the observations of eclipses, using the luminosity evolution of Baily’s bead and the profile of the lunar edge available from satellite data. This approach unifies the definition of the solar limb with the inflection point of LDF for eclipses and drift-scan or heliometric methods. The method proposed is applied for the videos of the eclipse on 15 January 2010 recorded in Uganda and in India. The result suggests reconsidering the evaluations of the historical eclipses observed with the naked eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. Dealing with the radius is equivalent to dealing with the diameter, but in this work we refer to the former or to the latter depending on the context.

  2. http://www.lunar-occultations.com/iota/occult4.htm .

  3. http://www.aegis-elec.com/products/watec-902H_spec_eng.pdf .

  4. http://www.aegis-elec.com/products/watec-100N_spec_eng.pdf .

  5. http://www005.upp.so-net.ne.jp/k_miyash/occ02/limovie_en.html .

  6. http://wms.selene.jaxa.jp/selene_viewer/index_e.html .

  7. http://smsc.cnes.fr/PICARD/GP_instruments.htm .

References

  • Adassuriya, J., Gunasekera, S., Samarasinha, N.: 2012, Determination of the solar radius based on the annular solar eclipse of 15 January 2010. Sun Geophys. 6, 13.

    Google Scholar 

  • Antia, H.M., Basu, S., Pintar, J., Pohl, B.: 2000, Solar cycle variation in solar f-mode frequencies and radius. Solar Phys. 192, 459.

    Article  ADS  Google Scholar 

  • Araki, H., Tazawa, S., Noda, H., Tsubokawa, T., Kawano, N., Sasaki, S.: 2008, Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE. Adv. Space Res. 42, 317.

    Article  ADS  Google Scholar 

  • Auwers, A.: 1891, Der Sonnendurchmesser und der Venusdurchmesser nach den Beobachtungen an den Heliometern der deutschen Venus-Expeditionen. Astron. Nachr. 128, 361.

    Article  ADS  Google Scholar 

  • Baily, F.: 1836, On a remarkable phenomenon that occurs in total and annular eclipses of the sun. Mon. Not. Roy. Astron. Soc. 4, 15.

    ADS  Google Scholar 

  • Bush, R.I., Emilio, M., Kuhn, J.R.: 2010, On the constancy of the solar radius. III. Astrophys. J. 716, 1381.

    Article  ADS  Google Scholar 

  • Clavius, C.: 1593, In Sphaeram Ioannis de Sacro Bosco Commentarius.

    Google Scholar 

  • Djafer, D., Thuillier, G., Sofia, S.: 2008, A comparison among solar diameter measurements carried out from the ground and outside Earth’s atmosphere. Astrophys. J. 676, 651.

    Article  ADS  Google Scholar 

  • Dziembowski, W.A., Goode, P.R., Schou, J.: 2001, Does the Sun shrink with increasing magnetic activity? Astrophys. J. 553, 897.

    Article  ADS  Google Scholar 

  • Eddy, J., Boornazian, A.A., Clavius, C., Shapiro, I.I., Morrison, L.V., Sofia, S.: 1980, Shrinking Sun. Sky Telesc. 60, 10.

    ADS  Google Scholar 

  • Egidi, A., Caccin, B., Sofia, S., Heaps, W., Hoegy, W., Twigg, L.: 2006, High-precision measurements of the solar diameter and oblateness by the Solar Disk Sextant (SDS) experiment. Solar Phys. 235, 407.

    Article  ADS  Google Scholar 

  • Emilio, M., Kuhn, J.R., Bush, R.I., Scholl, I.F.: 2012, Measuring the solar radius from space during the 2003 and 2006 Mercury transits. Astrophys. J., in press.

  • Haberreiter, M., Schmutz, W., Hubeny, I.: 2008, NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492, 833.

    Article  ADS  Google Scholar 

  • Krivova, V.I., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astron. Astrophys. 399, 1.

    Article  ADS  Google Scholar 

  • Kuhn, J.R., Bush, R.I., Emilio, M., Scherrer, P.H.: 2004, On the constancy of the solar diameter. II. Astrophys. J. 613, 1241.

    Article  ADS  Google Scholar 

  • Livingston, W., Wallace, L.: 2003, The Sun’s immutable basal quiet atmosphere. Solar Phys. 212, 227.

    Article  ADS  Google Scholar 

  • Pap, J.M.: 2003, Total solar and spectral irradiance variations from near-UV to infrared. In: Rozelot, J.-P. (ed.) The Sun’s Surface and Subsurface: Investigating Shape, Lecture Notes in Physics 599, Springer, Berlin, 129.

    Google Scholar 

  • Pouillet, C.S.M.: 1838, Memoire sur le chaleur solaire, Bachelier, Paris.

    Google Scholar 

  • Ribes, J.C., Nesme-Ribes, E.: 1993, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 76, 549.

    ADS  Google Scholar 

  • Rogerson, J.B.: 1959, The solar limb intensity profile. Astrophys. J. 130, 985.

    Article  ADS  Google Scholar 

  • Rozelot, J.P., Lefebvre, S., Pireaux, S., Ajabshirizadeh, A.: 2004, Are non-magnetic mechanisms such as temporal solar diameter variations conceivable for an irradiance variability? Solar Phys. 224, 229.

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys. 517, A48.

    Article  ADS  Google Scholar 

  • Sigismondi, C.: 2009, Guidelines for measuring solar radius with Baily beads analysis. Sci. China Ser. G 52, 1773.

    Article  Google Scholar 

  • Sigismondi, C.: 2011, High precision ground-based measurements of solar diameter in support of Picard mission. arXiv:1112.5878 .

  • Sigismondi, C., Oliva, P.: 2005, Solar oblateness from Archimedes to Dicke. Nuovo Cimento B 120, 1181.

    ADS  Google Scholar 

  • Sofia, S., Heaps, W., Twigg, L.W.: 1994, The solar diameter and oblateness measured by the solar disk sextant on the 1992 September 30 balloon flight. Astrophys. J. 427, 1048.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A.: 2005, Solar irradiance variations: From current measurements to long-term estimates. Solar Phys. 224, 197.

    Article  ADS  Google Scholar 

  • Thuillier, G., Claudel, J., Djafer, D., Haberreiter, M., Mein, N., Melo, S.M.L., Schmutz, W., Shapiro, A., Short, C.I., Sofia, S.: 2011, The shape of the solar limb: Models and observations. Solar Phys. 268, 125.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of the data taken with the LALT instrument on board the lunar orbiter Kaguya of JAXA/SELENE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sigismondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raponi, A., Sigismondi, C., Guhl, K. et al. The Measurement of Solar Diameter and Limb Darkening Function with the Eclipse Observations. Sol Phys 278, 269–283 (2012). https://doi.org/10.1007/s11207-012-9947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9947-2

Keywords

Navigation