Solar Physics

, Volume 284, Issue 2, pp 467–487 | Cite as

3D Solar Null Point Reconnection MHD Simulations

  • G. BaumannEmail author
  • K. Galsgaard
  • Å. Nordlund


Numerical MHD simulations of 3D reconnection events in the solar corona have improved enormously over the last few years, not only in resolution, but also in their complexity, enabling more and more realistic modeling. Various ways to obtain the initial magnetic field, different forms of solar atmospheric models as well as diverse driving speeds and patterns have been employed. This study considers differences between simulations with stratified and non-stratified solar atmospheres, addresses the influence of the driving speed on the plasma flow and energetics, and provides quantitative formulas for mapping electric fields and dissipation levels obtained in numerical simulations to the corresponding solar quantities. The simulations start out from a potential magnetic field containing a null-point, obtained from a Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) magnetogram magnetogram extrapolation approximately 8 hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to – although simpler than – horizontal motions observed by SOHO during the period preceding the flare. The general behavior is nearly independent of the driving speed, and is also very similar in stratified and non-stratified models, provided only that the boundary motions are slow enough. The boundary motions cause a build-up of current sheets, mainly in the fan-plane of the magnetic null-point, but do not result in a flare-like energy release. The additional free energy required for the flare could have been partly present in non-potential form at the initial state, with subsequent additions from magnetic flux emergence or from components of the boundary motion that were not represented by the idealized driving pattern.


Sun Corona Magnetic reconnection Magnetic null-point 



We would like to especially thank Jacob Trier Frederiksen and Troels Haugbølle for valuable discussions and for their assistance with the simulations. We thank Guillaume Aulanier and Sophie Masson for providing us with their MHD data and driver information. We also thank the referee for useful comments and criticism. This work has been supported by the Niels Bohr International Academy and the SOLAIRE Research Training Network of the European Commission (MRTN-CT-2006-035484). The work of Å.N. was partially supported by the Danish Research Council for Independent Research (FNU) and the funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project n° 263340, ). The data for the magnetic field extrapolation were taken from the SOHO/MDI catalog. SOHO is a project of international cooperation between ESA and NASA. We furthermore acknowledge that the results in this paper have been achieved using resources at the Danish Center for Scientific Computing in Copenhagen, as well as PRACE and GCS/NIC Research Infrastructure resources on JUGENE and JUROPA based at Jülich in Germany.


  1. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E.: 2004, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047 – 1063. doi: 10.1051/0004-6361:20035934. ADSCrossRefGoogle Scholar
  2. Arzner, K., Vlahos, L.: 2006, Gyrokinetic electron acceleration in the force-free corona with anomalous resistivity. Astron. Astrophys. 454, 957 – 967. doi: 10.1051/0004-6361:20064953. ADSCrossRefGoogle Scholar
  3. Berger, M.A., Asgari-Targhi, M.: 2009, Self-organized braiding and the structure of coronal loops. Astrophys. J. 705, 347 – 355. doi: 10.1088/0004-637X/705/1/347. ADSCrossRefGoogle Scholar
  4. Bingert, S., Peter, H.: 2011, Intermittent heating in the solar corona employing a 3D MHD model. Astron. Astrophys. 530, A112. doi: 10.1051/0004-6361/201016019. ADSCrossRefGoogle Scholar
  5. Birn, J., Galsgaard, K., Hesse, M., Hoshino, M., Huba, J., Lapenta, G., Pritchett, P.L., Schindler, K., Yin, L., Büchner, J., Neukirch, T., Priest, E.R.: 2005, Forced magnetic reconnection. Geophys. Res. Lett. 32, 6105. doi: 10.1029/2004GL022058. ADSCrossRefGoogle Scholar
  6. Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, L105 – L108. doi: 10.1086/375834. ADSCrossRefGoogle Scholar
  7. Galsgaard, K., Nordlund, Å.: 1996, Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 101, 13445 – 13460. doi: 10.1029/96JA00428. ADSCrossRefGoogle Scholar
  8. Galsgaard, K., Pontin, D.I.: 2011, Steady state reconnection at a single 3D magnetic null point. Astron. Astrophys. 529, A20. doi: 10.1051/0004-6361/201014359. ADSCrossRefGoogle Scholar
  9. Green, J.M.: 1989, Geometrical properties of 3d reconnecting magnetic fields with nulls. J. Geophys. Res. 93, 8583. ADSCrossRefGoogle Scholar
  10. Gudiksen, B.V., Nordlund, Å.: 2002, Bulk heating and slender magnetic loops in the solar corona. Astrophys. J. Lett. 572, L113 – L116. doi: 10.1086/341600. ADSCrossRefGoogle Scholar
  11. Gudiksen, B.V., Nordlund, Å.: 2005, An ab initio approach to the solar coronal heating problem. Astrophys. J. 618, 1020 – 1030. doi: 10.1086/426063. ADSCrossRefGoogle Scholar
  12. Hyman, J.M.: 1979, A method of lines approach to the numerical solution of conservation laws. In: Advances in Computer Methods for Partial Differential Equations – III, New Brunswick, NJ, Int. Assoc. Math. Comp. Sim., 313 – 321. Google Scholar
  13. Kretzschmar, M.: 2011, The Sun as a star: observations of white-light flares. Astron. Astrophys. 530, A84. doi: 10.1051/0004-6361/201015930. ADSCrossRefGoogle Scholar
  14. Kritsuk, A.G., Nordlund, Å., Collins, D., Padoan, P., Norman, M.L., Abel, T., Banerjee, R., Federrath, C., Flock, M., Lee, D., Li, P.S., Müller, W.-C., Teyssier, R., Ustyugov, S.D., Vogel, C., Xu, H.: 2011, Comparing numerical methods for isothermal magnetized supersonic turbulence. Astrophys. J. 737, 13. doi: 10.1088/0004-637X/737/1/13. ADSCrossRefGoogle Scholar
  15. Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559 – 578. doi: 10.1088/0004-637X/700/1/559. ADSCrossRefGoogle Scholar
  16. Ng, C.S., Lin, L., Bhattacharjee, A.: 2012, High-Lundquist number scaling in three-dimensional simulations of Parker’s model of coronal heating. Astrophys. J. 747, 109. doi: 10.1088/0004-637X/747/2/109. ADSCrossRefGoogle Scholar
  17. Nordlund, A., Galsgaard, K.: 1997a, A 3D MHD code for parallel computers. Technical report, Niels Bohr Institute. Google Scholar
  18. Nordlund, A., Galsgaard, K.: 1997b, Topologically forced reconnection. In: Simnett, G.M., Alissandrakis, C.E., Vlahos, L. (eds.) European Meeting on Solar Physics, Lecture Notes in Physics 489, Springer, Berlin, 179 –200. doi: 10.1007/BFB0105676. Google Scholar
  19. Parnell, C.E., Haynes, A.L., Galsgaard, K.: 2008, Recursive reconnection and magnetic skeletons. Astrophys. J. 675, 1656 – 1665. doi: 10.1086/527532. ADSCrossRefGoogle Scholar
  20. Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759 – 770. doi: 10.1063/1.871810. ADSCrossRefGoogle Scholar
  21. Pontin, D.I.: 2011, Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 1508 – 1522. doi: 10.1016/j.asr.2010.12.022. ADSCrossRefGoogle Scholar
  22. Pontin, D.I., Bhattacharjee, A., Galsgaard, K.: 2007, Current sheet formation and nonideal behavior at three-dimensional magnetic null points. Phys. Plasmas 14, 052106. doi: 10.1063/1.2722300. ADSCrossRefGoogle Scholar
  23. Priest, E.R., Titov, V.S.: 1996, Magnetic reconnection at three-dimensional null points. Philos. Trans. Roy. Soc. London Ser. A 354, 2951 – 2992. doi: 10.1098/rsta.1996.0136. MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. Priest, E.R., Bungey, T.N., Titov, V.S.: 1997, The 3D topology and interaction of complex magnetic flux systems. Geophys. Astrophys. Fluid Dyn. 84, 127 – 163. doi: 10.1080/03091929708208976. MathSciNetADSCrossRefGoogle Scholar
  25. Pudovkin, M.I., Zaitseva, S.A., Shumilov, N.O., Meister, C.-V.: 1998, Large-scale electric fields in solar flare regions. Solar Phys. 178, 125 – 136. ADSCrossRefGoogle Scholar
  26. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429. ADSCrossRefGoogle Scholar
  27. Schindler, K., Hesse, M., Birn, J.: 1988, General magnetic reconnection, parallel electric fields, and helicity. J. Geophys. Res. 93, 5547 – 5557. doi: 10.1029/JA093iA06p05547. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Niels Bohr InstituteKøbenhavn ØDenmark

Personalised recommendations