Skip to main content
Log in

Comparisons of CME Morphological Characteristics Derived from Five 3D Reconstruction Methods

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We compare different methods to reconstruct three-dimensional (3D) coronal mass ejection (CME) morphology. The explored methods include geometric localisation, mask fitting, forward modelling, polarisation ratio, and local correlation tracking plus triangulation. These five methods are applied to the same CME event that occurred on 7 August 2010. Their corresponding results are presented and compared, especially in their propagation direction and spatial extent in 3D. We find that the mask fitting and geometric localisation methods produce consistent results. Reconstructions including three-view observations are more precise than reconstructions done with only two views. Compared to the forward modelling method, in which an a priori shape of the CME geometry is assumed, the mask fitting has more flexibility. The polarisation ratio method makes use of the Thomson scattering geometry. We find that spatially the 3D CME derived from the mask fitting lies mostly in the overlap region obtained with the polarisation method using data from STEREO. In addition, the mask fitting can help resolve the front/back ambiguity inherent in the polarisation ratio method. However, the local correlation tracking plus triangulation did not show consistent results with the other four methods. This method performed poorly, primarily because the two STEREO spacecraft had a large angular separation. Under these circumstances, it is difficult to identify points taken from independent images that correspond to the same physical feature. Excluding the local correlation tracking method, the latitude of the CME’s centre of gravity derived from the other methods deviates within 1, and the longitude differs within 19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Aschwanden, M.J., Nitta, N.V., Wuelser, J.-P., Lemen, J.R., Sandman, A., Vourlidas, A., Colaninno, R.C.: 2009, Astrophys. J. 706, 376.

    Article  ADS  Google Scholar 

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York, 150.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, Solar Phys. 162, 357.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Nat. Commun. 1.

  • Colaninno, R.C., Vourlidas, A.: 2009, Astrophys. J. 698, 852.

    Article  ADS  Google Scholar 

  • de Koning, C.A., Pizzo, V.J., Biesecker, D.A.: 2009, Solar Phys. 256, 167.

    Article  ADS  Google Scholar 

  • de Koning, C.A., Pizzo, V.J.: 2011, Space Weather 9, 3001.

    Article  Google Scholar 

  • Dere, K.P., Wang, D., Howard, R.: 2005, Astrophys. J. Lett. 620, L119.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, Solar Phys. 162, 1.

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Wei, Y., Gan, W.Q., Zhang, T.L., Wang, M.Y.: 2012, Astrophys. J. 751, 18.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Space Sci. Rev. 136, 67.

    Article  ADS  Google Scholar 

  • Inhester, B.: 2006, arXiv:astro-ph/0612649 .

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, Space Sci. Rev. 136, 5.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17.

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Marqué, C., Rodriguez, L., Gissot, S., Zhukov, A.N., Berghmans, D., Davila, J.: 2009, Solar Phys. 259, 123.

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., et al.: 2010, Ann. Geophys. 28, 203.

    Article  ADS  Google Scholar 

  • Mierla, M., Chifu, I., Inhester, B., Rodriguez, L., Zhukov, A.: 2011, Astron. Astrophys. 530, L1.

    Article  ADS  Google Scholar 

  • Moran, T.G., Davila, J.M.: 2004, Science 305, 66.

    Article  ADS  Google Scholar 

  • Moran, T.G., Davila, J.M., Thompson, W.T.: 2010, Astrophys. J. 712, 453.

    Article  ADS  Google Scholar 

  • Pizzo, V.J., Biesecker, D.A.: 2004, Geophys. Res. Lett. 31, 21802.

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, Astrophys. J. 701, 283.

    Article  ADS  Google Scholar 

  • Rodriguez, L., Mierla, M., Zhukov, A.N., West, M., Kilpua, E.: 2011, Solar Phys. 270, 561.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Solar Phys. 269, 389.

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Astrophys. J. Suppl. 194, 33.

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Astrophys. J. 652, 763.

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Solar Phys. 256, 111.

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2011, J. Atmos. Solar-Terr. Phys. 73, 1156.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., Xia, L., He, J., Wang, X.: 2012, Astrophys. J. 748, 106.

    Article  ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., et al.: 2004, In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 111.

    Google Scholar 

  • Zuccarello, F.P., Bemporad, A., Jacobs, C., Mierla, M., Poedts, S., Zuccarello, F.: 2012, Astrophys. J. 744, 66.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Gissot for providing the LCT program. STEREO is a project of NASA. The SECCHI data used here were produced by an international consortium of the Naval Research Laboratory (USA), the Lockheed Martin Solar and Astrophysics Laboratory (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max Planck Institute for Solar System Research (MPS, Germany), Centre Spatiale de Liège (Belgium), Institut d’Optique Théorique et Appliqueé (France), and Institut d’Astrophysique Spatiale (France). LF is supported by the NSFC under Grants 11003047 and 11233008, by MSTC Program 2011CB811402, and by Grant BK2012889. LF also acknowledges the Key Laboratory of Dark Matter and Space Astronomy, CAS, for financial support. The contribution of BI benefited from the support of the German Space Agency DLR and the German Ministry of Economy and Technology under contract 50 OC 0904. MM thanks the MPS for financial support. Part of her work was also supported by the project TE 73/11.08.2010. The work at the MPS was supported by DLR contract 50 OC 0904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Inhester, B. & Mierla, M. Comparisons of CME Morphological Characteristics Derived from Five 3D Reconstruction Methods. Sol Phys 282, 221–238 (2013). https://doi.org/10.1007/s11207-012-0143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0143-1

Keywords

Navigation