Spatially Resolved Microwave Observations of Multiple Periodicities in a Flaring Loop


Quasi-periodic pulsations (QPPs) with at least three simultaneously existing spectral components with periods P≥30 s, P≈20 s, and about P≈10 s were detected during the decay phase of a solar flare on 3 July 2002, observed with the Nobeyama Radioheliograph (NoRH). A detailed study of the spatial structure of the Fourier amplitudes of QPPs along a flaring loop has revealed different spatial distributions of the three components. It is shown that the source of the QPPs with period P≥30 s has its maximum amplitude in the inner region of the loop, between the footpoints. QPPs with period P≈20 s are localized at the periphery of the loop, mainly in the outer parts of the footpoints. The spatial distribution of oscillations with period about P≈10 s contains three regions of high QPP amplitudes: two near the footpoints and one in the middle of the flaring region. It is shown that the observed properties of the spectral components are most accurately described by the fundamental, second, and third harmonics of the kink mode standing waves. This is the first identification of the kink mode in flare loops which is based on strict limitations derived from data on the spatial structure of a pulsating flare region.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. Andries, J., Arregui, I., Goossens, M.: 2005, Astrophys. J. Lett. 624, L57.

    ADS  Article  Google Scholar 

  2. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Astrophys. J. 520, 880.

    ADS  Article  Google Scholar 

  3. Aschwanden, M.J., Schrijver, C.J.: 2011, Astrophys. J. 736, 102.

    ADS  Article  Google Scholar 

  4. Diaz, A.J.: 2006, Astron. Astrophys. 456, 737.

    ADS  Article  Google Scholar 

  5. Dulk, G.A., Marsh, K.A.: 1982, Astrophys. J. 259, 350.

    ADS  Article  Google Scholar 

  6. Edwin, P.M., Roberts, B.: 1983, Solar Phys. 88, 179.

    ADS  Article  Google Scholar 

  7. Inglis, A.R., Nakariakov, V.M.: 2009, Astron. Astrophys. 493, 259.

    ADS  Article  Google Scholar 

  8. Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., Shibasaki, K.: 2010, Solar Phys. 267, 329.

    ADS  Article  Google Scholar 

  9. Melnikov, V.F., Reznikova, V.E., Shibasaki, K., Nakariakov, V.M.: 2005, Astron. Astrophys. 439, 727.

    ADS  Article  Google Scholar 

  10. Mészárosová, H., Karlický, M., Rybák, J., Fárník, F., Jiřička, K.: 2006, Astron. Astrophys. 460, 865.

    ADS  Article  Google Scholar 

  11. Mossessian, G., Fleishman, G.D.: 2012, Astrophys. J. 748, 140.

    ADS  Article  Google Scholar 

  12. Nakariakov, V.M., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M.: 1999, Science 285, 862.

    ADS  Article  Google Scholar 

  13. Nakariakov, V.M., Melnikov, V.F.: 2009, Space Sci. Rev. 149, 119.

    ADS  Article  Google Scholar 

  14. Nakariakov, V.M., Melnikov, V.F., Reznikova, V.E.: 2003, Astron. Astrophys. 412, L7.

    ADS  Article  Google Scholar 

  15. Nakariakov, V.M., Verwichte, E.: 2005, Living Rev. Solar Phys. 3, 1.

    Google Scholar 

  16. Stepanov, A.V., Kopylova, Y.G., Tsap, Y.T., Shibasaki, K., Melnikov, V.F., Goldvarg, T.B.: 2004, Astron. Lett. 30, 480.

    ADS  Article  Google Scholar 

  17. Stepanov, A.V., Zaitsev, V.V., Kisliakov, A.G., Urpo, S.: 2009, Commun. Asteroseismol. 159, 30.

    ADS  Article  Google Scholar 

  18. Tsap, Yu.T., Kopylova, Yu.G., Stepanov, A.V., Melnikov, V.F., Shibasaki, K.: 2008, Solar Phys. 253, 161.

    ADS  Article  Google Scholar 

  19. Van Doorsselaere, T., Ruderman, M.S., Robertson, D.: 2008, Astron. Astrophys. 485, 849.

    ADS  MATH  Article  Google Scholar 

  20. Verwichte, E., Foullon, C., Nakariakov, V.M.: 2006, Astron. Astrophys. 446, 1139.

    ADS  Article  Google Scholar 

  21. Wang, T.J., Solanki, S.K.: 2004, Astron. Astrophys. 421, L33.

    ADS  Article  Google Scholar 

  22. Zaitsev, V.V., Stepanov, A.V.: 1975, Geomagn. Aeron. Fiz. Soln. 37, 3.

    ADS  Google Scholar 

  23. Zaitsev, V.V., Stepanov, A.V.: 2008, Phys. Usp. 51, 1123.

    ADS  Article  Google Scholar 

Download references


The Nobeyama Radioheliograph is operated by the Nobeyama Solar Radio Observatory/National Astronomical Observatory of Japan. This research was partly supported by grants of the Russian Foundation for Basic Research Nos. 11-02-91175 and 12-02-00616, the Program of the Russian Academy of Sciences No. 22, the Federal Program “Kadry” Nos. P683/20.05.2010 and 8524, “Scientific School” No. 1625.2012.2, and the Program MC FP7-PEOPLE-2011-IRSES-295272. V.M. is supported by the Chinese Academy of Sciences visiting professorship for senior international scientists with grant No. 2010t2j36. The authors express their special gratitude to V. Nakariakov for helpful discussions and to V. Grechnev for the codes for stabilization of the images and calculation of the variance map.

Author information



Corresponding author

Correspondence to E. G. Kupriyanova.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kupriyanova, E.G., Melnikov, V.F. & Shibasaki, K. Spatially Resolved Microwave Observations of Multiple Periodicities in a Flaring Loop. Sol Phys 284, 559–578 (2013).

Download citation


  • Flares, impulsive phase
  • Oscillations, solar
  • Radio bursts, microwave