Skip to main content
Log in

Properties of Ion-Cyclotron Waves in the Open Solar Corona

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Remote observations of coronal holes have strongly suggested the resonant interactions of ion-cyclotron waves with ions as a principal mechanism for plasma heating and acceleration of the fast solar wind. In order to study these waves, a WKB (Wentzel–Kramers–Brillouin) linear perturbation analysis is used in the frame work of a collisionless multi-fluid model where we consider in addition to protons a second ion component made of alpha particles. We consider a non-uniform background plasma describing a funnel region in the open coronal holes and we use the ray tracing Hamiltonian-type equations to compute the ray path of the waves and the spatial variation of their properties. At low frequency (smaller than the proton cyclotron frequency), the results showed a distinct behavior of the two ion-cyclotron modes found in our calculations, namely the first one propagates anisotropically guided along the magnetic field lines while the second one propagates isotropically with no preferred direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Axford, W.I., McKenzie, J.F.: 1997, The origin of the solar wind. In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) Solar Wind Eight, American Institute of Physics, Woodbury, 31.

    Google Scholar 

  • Bernstein, I.B., Friedland, L.: 1984, Geometric optics in space and time varying plasmas. In: Galeev, A.A., Sudan, R.N. (eds.) Basic Plasma Physics: Handbook of Plasma Physics 1, 367.

    Google Scholar 

  • Bourouaine, S., Vocks, C., Marsch, E.: 2008, Multi-ion kinetic model for coronal loop. Astrophys. J. Lett. 680, L77.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6(3). http://solarphysics.livingreviews.org/Articles/lrsp-2009-3/ .

  • Fineschi, S., Naletto, G., Nicolosi, P., Noci, G., Pernechele, C., Romoli, M., Spadaro, D., Tondello, G.: 1994, Ultraviolet coronagraph spectrometer (UVCS) for the solar and heliospheric (SOHO) mission. In: Cerutti-Maori, M.G., Roussel, P. (eds.) Space Optics 1994: Earth Observation and Astronomy. Proc. SPIE 2209, 348.

    Google Scholar 

  • Fleck, B., Domingo, V., Poland, A.I.: 1995, The SOHO mission. Solar Phys. 162, ix. doi: 10.1007/BF00733423 .

    Article  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III – Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319.

    Article  ADS  Google Scholar 

  • Gabriel, A.H.: 1976, A magnetic model of the solar transition region. Phil. Trans. Roy. Soc. London A 281, 339.

    Article  ADS  Google Scholar 

  • Hackenberg, P., Marsch, E., Mann, G.: 2000, On the origin of the fast solar wind in polar coronal funnels. Astron. Astrophys. 360, 1139.

    ADS  Google Scholar 

  • Hollweg, J.V.: 2000, Cyclotron resonance in coronal holes: 3. A five-beam turbulence-driven model. J. Geophys. Res. 105, 15699.

    Article  ADS  Google Scholar 

  • Hollweg, J.V., Isenberg, P.A.: 2002, Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147.

    Article  Google Scholar 

  • Isenberg, P.A., Lee, M.A., Hollweg, J.V.: 2000, A kinetic model of coronal heating and acceleration by ion-cyclotron waves: Preliminary results. Solar Phys. 193, 247.

    Article  ADS  Google Scholar 

  • Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Gardner, L.D., et al.: 1997, First results from the SOHO Ultraviolet Coronagraph Spectrometer. Solar Phys. 175, 613.

    Article  ADS  Google Scholar 

  • Krauss-Varban, D., Omidi, N., Quest, K.B.: 1994, Mode properties of low-frequency waves: Kinetic theory versus Hall-MHD. J. Geophys. Res. 99, 5987.

    Article  ADS  Google Scholar 

  • Li, X., Habbal, S.R., Hollweg, J.V., Esser, R.: 1999, Heating and cooling of protons by turbulence-driven ion cyclotron waves in the fast solar wind. J. Geophys. Res. 104, 2521.

    Article  ADS  Google Scholar 

  • Mann, G., Hackenberg, P., Marsch, E.: 1997, Linear mode analysis in multi-ion plasmas. J. Plasma Phys. 58, 205.

    Article  ADS  Google Scholar 

  • Markovskii, S.A.: 2001, Generation of ion cyclotron waves in coronal holes by a global resonant magnetohydrodynamic mode. Astrophys. J. 557, 337.

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y.: 2001, Heating and acceleration of coronal ions interacting with plasma waves through cyclotron and Landau resonance. J. Geophys. Res. 106, 227.

    Article  ADS  Google Scholar 

  • Mecheri, R., Marsch, E.: 2007, Coronal ion-cyclotron beam instabilities within the multi-fluid description. Astron. Astrophys. 474, 609.

    Article  ADS  Google Scholar 

  • Melrose, D.B.: 1986, Instabilities in Space and Laboratory Plasmas, Cambridge University Press, Cambridge, Chapter 12.

    Book  Google Scholar 

  • Ofman, L., Gary, S.P., Viñas, A.: 2002, Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra. J. Geophys. Res. 107, 1461.

    Article  Google Scholar 

  • Ofman, L., Davila, J.M., Nakariakov, V.M., Viñas, A.-F.: 2005, High-frequency Alfvén waves in multi-ion coronal plasma: Observational implications. J. Geophys. Res. 110, A09102.

    Article  ADS  Google Scholar 

  • Shafranov, V.D.: 1967, Electromagnetic waves in a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics 3, Consultant Bureau, New York, 1.

    Chapter  Google Scholar 

  • Stix, T.H.: 1992, Waves in Plasmas, American Institute of Physics, New York, Chapter 10.

    Google Scholar 

  • Vocks, C., Marsch, E.: 2001, A semi-kinetic model of wave-ion interaction in the solar corona. Geophys. Res. Lett. 28, 1917.

    Article  ADS  Google Scholar 

  • Weinberg, S.: 1962, Eikonal method in magnetohydrodynamics. Phys. Rev. 126, 1899.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wilhelm, K.: 1995, SUMER – Solar Ultraviolet Measurements of Emitted Radiation. In: Benz, A.O., Krüger, A. (eds.) Coronal Magnetic Energy Releases, Lecture Notes in Physics 444, Springer, Berlin, 245.

    Chapter  Google Scholar 

  • Wilhelm, K., Marsch, E., Dwivedi, B.N., Hassler, D.M., Lemaire, P., Gabriel, A.H., Huber, M.C.E.: 1998, The solar corona above polar coronal holes as seen by SUMER on SOHO. Astrophys. J. 500, 1023.

    Article  ADS  Google Scholar 

  • Xie, H., Ofman, L., Viñas, A.: 2004, Multiple ions resonant heating and acceleration by Alfvén/cyclotron fluctuations in the corona and the solar wind. J. Geophys. Res. 109, 8103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mecheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mecheri, R. Properties of Ion-Cyclotron Waves in the Open Solar Corona. Sol Phys 282, 133–146 (2013). https://doi.org/10.1007/s11207-012-0134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0134-2

Keywords

Navigation