Skip to main content
Log in

What Have We Learned from Helioseismology, What Have We Really Learned, and What Do We Aspire to Learn?

  • SOLAR DYNAMICS AND MAGNETISM
  • Invited Review
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Helioseismology has been widely acclaimed as having been a great success: it appears to have answered nearly all the questions that we originally asked, some with unexpectedly high precision. We have learned how the sound speed and matter density vary throughout almost all of the solar interior – something which not so very long ago was generally considered to be impossible – we have learned how the Sun rotates, and we have a beautiful picture, on a coffee cup, of the thermal stratification of a sunspot, and also an indication of the material flow around it. We have tried, with some success at times, to apply our findings to issues of broader relevance: the test of the General Theory of Relativity via planetary orbit precession (now almost forgotten because the issue has convincingly been closed, albeit no doubt temporarily) the solar neutrino problem, the manner of the transport of energy from the centre to the surface of the Sun, the mechanisms of angular-momentum redistribution, and the workings of the solar dynamo. The first two were of general interest to the broad scientific community beyond astronomy, and were, quite rightly, principally responsible for our acclaimed success; the others are still in a state of flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. I consider the seismic surface r=R of the Sun (assumed here to be spherically symmetrical) to be the radius at which c 2, regarded as a function of r, or c, regarded as a function of acoustic radius τ(r)=∫c −1 dr – both of which are close to being linear functions in the outer adiabatically stratified layers of the convection zone (Balmforth and Gough 1990; Lopes and Gough 2001) – extrapolate to zero. In the Sun, according to Model S of Christensen-Dalsgaard et al. (1996), it lies about 1000 km above the photosphere, the precise value depending on exactly how the extrapolation is carried out. There is nothing special about the structure of the actual atmosphere in its vicinity, which is well inside the outer evanescent zone of most of the seismic modes and therefore has little significant influence on the dynamics. Instead, it acts simply as a (virtual) singularity in the acoustic wave equation, providing a convenient parametrisation of conditions (well below the photosphere) in the vicinity of the upper turning points of the modes. Put another way, it provides a convenient fiducial location with respect to which the acoustic phase in the propagating zone beneath is related. Unlike the photosphere, which has no acoustic significance, it shares a relation with the deeper solar interior that is robust, and is insensitive to the non-seismic, thermal and radiative, properties of the outer convective boundary layer, whose structure changes with the solar cycle (Antia and Basu, 2004; Dziembowski and Goode, 2004, 2005; Lefebvre and Kosovichev, 2005; Lefebvre, Kosovichev, and Rozelot, 2007). In contrast to other, non-seismic, radii (cf. Bahcall and Ulrich, 1988), it provides a stable outer limit to the effective total acoustic-radius integral τ(R), which determines the large frequency separation; in Model S it is some 200 seconds or so greater than the actual acoustic radius of the photosphere.

  2. Included for comparison is one of the models with low Y that was used in the original calibration with low-degree modes by Christensen-Dalsgaard and Gough (1981). The qualitative differences between the models can be appreciated by realising first that the radiative envelopes are roughly polytropic (with index 3.5), and that it is adequate to approximate the equation of state by the perfect-gas law. Then it is clear that the magnitude of T(r) (and ρ) must be greater in the higher-Y model, because the total energy generation rate, which is an increasing function of X, ρ, and T, is the same for the two models. Polytropic scaling (e.g. Gough, 1990) indicates that Z is a steeply decreasing function of X, so Z is much greater in the higher-Y model. In addition, the polytropic radius scale is greater for the higher-Y model, as is evident from Figure 1 by imagining an extrapolation of the functional form of T(r) outwards from the radiative zone. Consequently the convection zone, which steepens the gradient, has more truncating from the radiative structure to perform in order to maintain the observed photospheric radius, and is therefore deeper. An additional scaling in magnitude is required to convert T to c 2T/μ, raising the dotted curve (corresponding to the model with the lower Y) relative to the continuous curve. It also depresses both curves near the centre of the star, in the energy-generating core where μ has been augmented by nuclear transmutation, providing a diagnostic of main-sequence age.

  3. The gravitational attraction associated with the energy density [−GM/r] of the gravitational field surrounding the Sun, absent in Newton’s theory, causes the total gravitational attraction to increase: very roughly speaking, as a result of energy conservation the apparent gravitational mass of a planet at distance r from the Sun, in a flat representation of space, is augmented by approximately GM/c 2 r per unit mass of planet above what it would have appeared to have been at infinity; M is the mass of the Sun, and here c is the speed of light. Similarly, the energy, hence the frequency, of a photon is multiplied by a factor Γ=1+GM/c 2 r – that causes the familiar gravitational redshift. Consequently, the orbit equation is modified simply by multiplying the Newtonian gravitational force on the planet by Γ3. After linearisation and rewriting M in terms of the orbital specific angular momentum \(h=\sqrt{(GMr)}\), valid for nearly circular orbits, the effective attractive force becomes −(1+3h 2/c 2 r 2)GM/r 2; it increases with increasing proximity more rapidly than Newton’s inverse square. It is easy to see also that the gravitational field in the equatorial plane of a rotating (oblate) axisymmetric self-gravitating body (like the Sun) also increases with decreasing distance faster than the field around a corresponding spherically symmetrical body: the act of flattening a spherical body takes equal amounts of material from the poles towards the near and the far sides of the Equator, the increase in gravitational attraction by closer nearside matter exceeding the lesser decrease by farside matter. Therefore the net gravitational attraction is increased, by an amount which increases as r decreases and the shape of the Sun becomes more apparent. The force is given approximately by \(-(1+\frac{3}{2}J_{2}R^{2}/r^{2})GM/r^{2}\); J 2 is the quadrupole moment. In both cases, therefore, a planet is drawn towards the Sun more strongly with increasing proximity than it would have been in an inverse-square field. Conserving its angular momentum, it is thereby caused to rotate through a greater angle near perihelion because its orbital angular velocity is augmented, distorting an otherwise approximately elliptical bound Newtonian orbit in such a manner as to appear to make it simply precess in the same direction as the angular velocity of the planet. (Near aphelion the oppositely directed contribution to the precession is lesser, therefore too small to annul the contribution from near perihelion.) Use of planetary (or spacecraft) orbital precession rates to calibrate the relativistically induced deviation from the inverse-square gravitational field surrounding the Sun therefore requires one to know the contribution from the distortion from spherical symmetry of the mass distribution in the Sun, such as is produced by centrifugal acceleration due to rotation. The precession rate is most easily calculated by perturbation theory (e.g. Ramsey, 1937).

  4. I am assuming that the seismic data processers have judged their errors correctly, and that the error correlations in the frequency data sets, normally ignored, are not unduly severe. I am also assuming that, where it is appropriate, asphericity of equilibrium structure is taken correctly into account.

  5. The original analysis employed simulations in a model atmosphere with the previously accepted chemical composition; from 2009 onwards, newer simulations by Asplund and his collaborators were carried out with the Fe abundance inferred from the 2005 abundance determinations; the abundances of C, N, and O were not changed because their spectral lines are weak and have no significant impact on the radiative energy flux (R. Trampedach, personal communication, 2012).

  6. Implications from earlier estimates of Y to determine T(r) have been discussed by Elliott (1995) and Tripathy and Christensen-Dalsgaard (1998), the first under the assumption that Y(r) differs from that in a reference solar model by just a constant, the second that it can be obtained simply by scaling the reference-model value by a constant factor, both of which are inaccurate in the core, although Elliott notes that the opacity perturbations produce a predominantly local response, so that these analyses should provide a fair estimate in the radiative envelope. The Tripathy–Christensen-Dalsgaard scaling was used by Tripathy, Basu, and Christensen-Dalsgaard (1998) to obtain the opacity difference from Model S by RLS frequency fitting (J. Christensen-Dalsgaard, personal communication, 2012) assuming that difference can be expressed as a function of T alone, yielding a superficially similar functional form to the continuous curve in Figure 6, but with a magnitude about 50 per cent greater. Bahcall et al. (2005) have estimated the opacity difference by adjusting κ by hand in solar models. Their preferred model had a constant 11 % augmentation over the OPAL values using the most recent abundance determinations (Asplund et al., 2000, 2004; Asplund, 2005; Allende Prieto, Lambert, and Asplund, 2001, 2002; Asplund personal communication with Bahcall et al., 2004) in the radiative envelope down to T=5×106 K, beneath which the augmentation was smoothly reduced to zero (probably by a half Lorentzian function with half-width at half maximum of 2×105 K), and has a seismic structure as close to that of the Sun as does Model S. Regarding that model as a proxy Sun, one would expect the relative opacity difference between it and a model with the unmodified abundances to be comparable with the inference by Christensen-Dalsgaard et al. (2009). The two estimates are depicted in Figure 6. Korzennik and Ulrich (1989) had earlier estimated opacity errors by RLS (L2 norm) data fitting, and Saio (1992) by L1 data fitting, each by scaling κ by a function of T and ignoring the dependence of the relation between T and the seismic variables on chemical composition; they expressed their results as deviations from different reference models, so they cannot easily be compared with those presented in Figure 6. An estimate by OLA (Takata and Gough 2001) of the absolute structure of the Sun, including opacity, using the procedure for determining Y described in the text (together with tachocline homogenisation as calibrated by Elliott, Gough, and Sekii (1998)) is presented by Gough and Scherrer (2002) and Gough (2004, 2006).

  7. Di Mauro et al. quote Y s=0.2539±0.0005 when OPAL is used, Y s=0.2457±0.0005 when MHD is used, the errors being merely formal, representing a precision error that takes no account of the error in the relation between Y s and γ 1 in the reference model. With those values the magnitude of the inferred \(\overline{\delta_{\mathrm{int}} \mathrm{ln}\,\gamma_{1}}\) was found to be the greater for the MHD equation of state beneath the helium ionisation zones, and the lesser above r/R≈0.97 in the He ii ionisation zone. That is perhaps not surprising because MHD is possibly better at taking into account the complicated chemistry that dominates higher up in the solar envelope, whereas the virial expansion used for OPAL is perhaps more reliable where such complications make only a minor non-ideal contribution. The difference between OPAL and MHD must surely offer some estimate of the total uncertainty.

  8. Moreover, the initial helium abundance [Y 0] of the calibrated model is about 0.250, which is dangerously close to the amount [Y p] believed to have been created by Big-Bang nucleosynthesis, whose estimated value has been climbing over the last two decades (Steigman 2007): the latest estimate is Y p=0.2478±0.0006 (G. Steigman and M. Pettini, personal communication, 2011). Subsequent contamination of the interstellar medium by supernovae exacerbates the situation.

References

  • Abraham, Z., Iben, I. Jr: 1971, More solar models and neutrino fluxes. Astrophys. J. 170, 157. doi: 10.1086/151197 .

    ADS  Google Scholar 

  • Allende Prieto, C., Lambert, D.L., Asplund, M.: 2001, The forbidden abundance of oxygen in the Sun. Astrophys. J. Lett. 556, L63 – L66. doi: 10.1086/322874 .

    ADS  Google Scholar 

  • Allende Prieto, C., Lambert, D.L., Asplund, M.: 2002, A reappraisal of the solar photospheric C/O ratio. Astrophys. J. Lett. 573, L137 – L140. doi: 10.1086/342095 .

    ADS  Google Scholar 

  • Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A.: 2002, Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science 297, 1678 – 1683. doi: 10.1126/science.1073950 .

    ADS  Google Scholar 

  • Ando, H., Osaki, Y.: 1975, Nonadiabatic nonradial oscillations – an application to the five-minute oscillation of the Sun. Publ. Astron. Soc. Japan 27, 581 – 603.

    ADS  Google Scholar 

  • Antia, H.M., Basu, S.: 2004, Temporal variations in the solar radius? In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future SP-559, ESA, Noordwijk, 301.

    Google Scholar 

  • Antia, H.M., Basu, S.: 2006, Determining solar abundances using helioseismology. Astrophys. J. 644, 1292 – 1298. doi: 10.1086/503707 .

    ADS  Google Scholar 

  • Antia, H.M., Basu, S.: 2011, Are recent solar heavy element abundances consistent with helioseismology? J. Phys. Conf. Ser. 271, 012034. doi: 10.1088/1742-6596/271/1/012034 .

    ADS  Google Scholar 

  • Antia, H.M., Chitre, S.M., Gough, D.O.: 2008, Temporal variations in the Sun’s rotational kinetic energy. Astron. Astrophys. 477, 657 – 663. doi: 10.1051/0004-6361:20078209 .

    ADS  MATH  Google Scholar 

  • Antia, H.M., Chitre, S.M., Gough, D.O.: 2012, On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone. Mon. Not. R. Astron. Soc., in press.

  • Asplund, M.: 2005, New light on stellar abundance analyses: Departures from LTE and homogeneity. Annu. Rev. Astron. Astrophys. 43, 481 – 530. doi: 10.1146/annurev.astro.42.053102.134001 .

    ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J.: 2005, The solar chemical composition. In: Barnes, T.G. III, Bash, F.N. (eds.) Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis CS-336, Astron. Soc. Pac., San Francisco, 25.

    Google Scholar 

  • Asplund, M., Nordlund, Å., Trampedach, R., Stein, R.F.: 2000, Line formation in solar granulation. II. The photospheric Fe abundance. Astron. Astrophys. 359, 743 – 754.

    ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Kiselman, D.: 2004, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 417, 751 – 768. doi: 10.1051/0004-6361:20034328 .

    ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Kiselman, D.: 2005a, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 435, 339 – 340. doi: 10.1051/0004-6361:20034328e .

    ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Blomme, R.: 2005b, Line formation in solar granulation. VI. [C I], C I, CH and C2 lines and the photospheric C abundance. Astron. Astrophys. 431, 693 – 705. doi: 10.1051/0004-6361:20041951 .

    ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 – 522. doi: 10.1146/annurev.astro.46.060407.145222 .

    ADS  Google Scholar 

  • Bahcall, J.N.: 2001, High-energy physics: neutrinos reveal split personalities. Nature 412, 29 – 31.

    ADS  Google Scholar 

  • Bahcall, J.N., Basu, S., Pinsonneault, M.H.: 1998, How uncertain are solar neutrino predictions? Phys. Lett. B 433, 1 – 8. doi: 10.1016/S0370-2693(98)00657-1 .

    ADS  Google Scholar 

  • Bahcall, J.N., Pinsonneault, M.H.: 1992, Standard solar models, with and without helium diffusion, and the solar neutrino problem. Rev. Mod. Phys. 64, 885 – 926. doi: 10.1103/RevModPhys.64.885 .

    ADS  Google Scholar 

  • Bahcall, J.N., Pinsonneault, M.H., Basu, S.: 2001, Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 – 1012. doi: 10.1086/321493 .

    ADS  Google Scholar 

  • Bahcall, J.N., Ulrich, R.K.: 1971, Solar neutrinos. III. Composition and magnetic-field effects and related inferences. Astrophys. J. 170, 593. doi: 10.1086/151245 .

    ADS  Google Scholar 

  • Bahcall, J.N., Ulrich, R.K.: 1988, Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60, 297 – 372. doi: 10.1103/RevModPhys.60.297 .

    ADS  Google Scholar 

  • Bahcall, J.N., Basu, S., Pinsonneault, M.H., Serenelli, A.M.: 2005, Helioseismological implications of recent solar abundance determinations. Astrophys. J. 618, 1049 – 1056. doi: 10.1086/426070 .

    ADS  Google Scholar 

  • Balmforth, N.J., Gough, D.O.: 1990, Effluent stellar pulsation. Astrophys. J. 362, 256 – 266. doi: 10.1086/169262 .

    ADS  Google Scholar 

  • Basu, S.: 1998, Effects of errors in the solar radius on helioseismic inferences. Mon. Not. Roy. Astron. Soc. 298, 719 – 728. doi: 10.1046/j.1365-8711.1998.01690.x .

    ADS  Google Scholar 

  • Basu, S., Antia, H.M.: 1995, Helium abundance in the solar envelope. Mon. Not. Roy. Astron. Soc. 276, 1402 – 1408.

    ADS  Google Scholar 

  • Basu, S., Antia, H.M.: 1997, Seismic measurement of the depth of the solar convection zone. Mon. Not. Roy. Astron. Soc. 287, 189 – 198.

    ADS  Google Scholar 

  • Basu, S., Antia, H.M.: 2003, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553 – 565. doi: 10.1086/346020 .

    ADS  Google Scholar 

  • Basu, S., Antia, H.M.: 2004, Constraining solar abundances using helioseismology. Astrophys. J. Lett. 606, L85 – L88. doi: 10.1086/421110 .

    ADS  Google Scholar 

  • Basu, S., Antia, H.M.: 2008, Helioseismology and solar abundances. Phys. Rep. 457, 217 – 283. doi: 10.1016/j.physrep.2007.12.002 .

    ADS  Google Scholar 

  • Basu, S., Däppen, W., Nayfonov, A.: 1999, Helioseismic analysis of the hydrogen partition function in the solar interior. Astrophys. J. 518, 985 – 993. doi: 10.1086/307312 .

    ADS  Google Scholar 

  • Basu, S., Mandel, A.: 2004, Does solar structure vary with solar magnetic activity? Astrophys. J. Lett. 617, L155 – L158. doi: 10.1086/427435 .

    ADS  Google Scholar 

  • Basu, S., Christensen-Dalsgaard, J., Chaplin, W.J., Elsworth, Y., Isaak, G.R., New, R., Schou, J., Thompson, M.J., Tomczyk, S.: 1997, Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies. Mon. Not. Roy. Astron. Soc. 292, 243.

    ADS  Google Scholar 

  • Basu, S., Chaplin, W.J., Elsworth, Y., New, R., Serenelli, A.M., Verner, G.A.: 2007, Solar abundances and helioseismology: fine-structure spacings and separation ratios of low-degree p-modes. Astrophys. J. 655, 660 – 671. doi: 10.1086/509820 .

    ADS  Google Scholar 

  • Basu, S., Broomhall, A.-M., Chaplin, W.J., Elsworth, Y., Fletcher, S., New, R.: 2010, Differences between the current solar minimum and earlier minima. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pac., San Francisco, 37.

    Google Scholar 

  • Baturin, V.A., Däppen, W., Gough, D.O., Vorontsov, S.V.: 2000, Seismology of the solar envelope: sound-speed gradient in the convection zone and its diagnosis of the equation of state. Mon. Not. Roy. Astron. Soc. 316, 71 – 83. doi: 10.1046/j.1365-8711.2000.03459.x .

    ADS  Google Scholar 

  • Bonanno, A., Schlattl, H., Paternò, L.: 2002, The age of the Sun and the relativistic corrections in the EOS. Astron. Astrophys. 390, 1115 – 1118. doi: 10.1051/0004-6361:20020749 .

    ADS  Google Scholar 

  • Bouvier, A., Wadhwa, M.: 2010, The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637 – 641. doi: 10.1038/ngeo941 .

    ADS  Google Scholar 

  • Brans, C., Dicke, R.H.: 1961, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 – 935. doi: 10.1103/PhysRev.124.925 .

    MathSciNet  ADS  MATH  Google Scholar 

  • Bretherton, F.P., Spiegel, A.E.: 1968, The effect of the convection zone on solar spin-down. Astrophys. J. Lett. 153, L77. doi: 10.1086/180224 .

    ADS  Google Scholar 

  • Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.A.: 1989, Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings. Astrophys. J. 343, 526 – 546. doi: 10.1086/167727 .

    ADS  Google Scholar 

  • Byington, B.M., Brummell, N.H., Stone, J., Gough, D.O.: 2012, Stoked nondynamos: sustaining field in magnetically non-closed systems. Phys. Fluids. in preparation.

  • Caffau, E., Maiorca, E., Bonifacio, P., Faraggiana, R., Steffen, M., Ludwig, H.-G., Kamp, I., Busso, M.: 2009, The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres. Astron. Astrophys. 498, 877 – 884. doi: 10.1051/0004-6361/200810859 .

    ADS  Google Scholar 

  • Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., Bonifacio, P.: 2011, Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Solar Phys. 268, 255 – 269. doi: 10.1007/s11207-010-9541-4 .

    ADS  Google Scholar 

  • Chaplin, W.J., Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., van der Raay, H.B., Wheeler, S.J., New, R.: 1996, BiSON performance. Solar Phys. 168, 1 – 18. doi: 10.1007/BF00145821 .

    ADS  Google Scholar 

  • Chaplin, W.J., Christensen-Dalsgaard, J., Elsworth, Y., Howe, R., Isaak, G.R., Larsen, R.M., New, R., Schou, J., Thompson, M.J., Tomczyk, S.,: 1999, Rotation of the solar core from BiSON and LOWL frequency observations. Mon. Not. Roy. Astron. Soc. 308, 405 – 414.

    ADS  Google Scholar 

  • Chaplin, W.J., Serenelli, A.M., Basu, S., Elsworth, Y., New, R., Verner, G.A.: 2007, Solar heavy-element abundance: constraints from frequency separation ratios of low-degree p-modes. Astrophys. J. 670, 872 – 884. doi: 10.1086/522578 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 1992, Solar models with enhanced energy transport in the core. Astrophys. J. 385, 354 – 362. doi: 10.1086/170944 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O.: 1976, Towards a heliological inverse problem. Nature 259, 89 – 92. doi: 10.1038/259089a0 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O.: 1980, Implications of the whole-disk Doppler observations of the Sun. In: Hill, H.A., Dziembowski, W.A. (eds.) Nonradial and Nonlinear Stellar Pulsation, Lecture Notes in Phys. 125, Springer, Berlin, 184 – 190. doi: 10.1007/3-540-09994-8_18 .

    Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O.: 1981, Comparison of observed solar whole-disk oscillation frequencies with the predictions of a sequence of solar models. Astron. Astrophys. 104, 173 – 176.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Houdek, G.: 2010, Prospects for asteroseismology. Astrophys. Space Sci. 328, 51 – 66. doi: 10.1007/s10509-009-0227-z .

    ADS  MATH  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O., Morgan, J.G.: 1979a, Dirty solar models. Astron. Astrophys. 73, 121 – 128.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O., Morgan, J.G.: 1979b, Erratum: “Dirty solar models” [Astron. Astrophys. 79, 260]. Astron. Astrophys. 79, 121 – 128.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O., Thompson, M.J.: 1989, Differential asymptotic sound-speed inversions. Mon. Not. Roy. Astron. Soc. 238, 481 – 502.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O., Thompson, M.J.: 1991, The depth of the solar convection zone. Astrophys. J. 378, 413 – 437. doi: 10.1086/170441 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Proffitt, C.R., Thompson, M.J.: 1993, Effects of diffusion on solar models and their oscillation frequencies. Astrophys. J. Lett. 403, L75 – L78. doi: 10.1086/186725 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Duvall, T.L. Jr, Gough, D.O., Harvey, J.W., Rhodes, E.J. Jr: 1985, Speed of sound in the solar interior. Nature 315, 378 – 382. doi: 10.1038/315378a0 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr, Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286 – 1292. doi: 10.1126/science.272.5266.1286 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Di Mauro, M.P., Houdek, G., Pijpers, F.: 2009, On the opacity change required to compensate for the revised solar composition. Astron. Astrophys. 494, 205 – 208. doi: 10.1051/0004-6361:200810170 .

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Monteiro, M.J.P.F.G., Rempel, M., Thompson, M.J.: 2011, A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology. Mon. Not. Roy. Astron. Soc. 414, 1158 – 1174. doi: 10.1111/j.1365-2966.2011.18460.x .

    ADS  Google Scholar 

  • Claverie, A., Isaak, G.R., McLeod, C.P., van der Raay, H.B., Roca-Cortes, T.: 1980, The latest results of the velocity spectroscopy of the Sun. In: Hill, H.A., Dziembowski, W.A. (eds.) Nonradial and Nonlinear Stellar Pulsation, Lecture Notes in Phys. 125, Springer, Berlin, 181. doi: 10.1007/3-540-09994-8_17 .

    Google Scholar 

  • Cox, A.N., Morgan, S.M., Rogers, F.J., Iglesias, C.A.: 1992, An opacity mechanism for the pulsations of OB stars. Astrophys. J. 393, 272 – 277. doi: 10.1086/171504 .

    ADS  Google Scholar 

  • Däppen, W.: 1998, Microphysics: equation of state. Space Sci. Rev. 85, 49 – 60. doi: 10.1023/A:1005176317912 .

    ADS  Google Scholar 

  • Däppen, W.: 2004, Equations of state for solar and stellar modeling. In: Celebonovic, V., Gough, D., Däppen, W. (eds.) Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter CS-731, AIP, New York, 3 – 17. doi: 10.1063/1.1828391 .

    Google Scholar 

  • Däppen, W.: 2007, Seismic abundance determination in the Sun and in stars. In: Stancliffe, R.J., Houdek, G., Martin, R.G., Tout, C.A. (eds.) Unsolved Problems in Stellar Physics: A Conference in Honour of Douglas Gough CS-948, AIP, New York, 179 – 190. doi: 10.1063/1.2818968 .

    Google Scholar 

  • Däppen, W., Gough, D.O.: 1984, On the determination of the helium abundance of the solar convection zone. In: Liège Internat. Astrophys. Coll. 25, Université de Liège, 264 – 268.

    Google Scholar 

  • Däppen, W., Gilliland, R.L., Christensen-Dalsgaard, J.: 1986, Weakly interacting massive particles, solar neutrinos, and solar oscillations. Nature 321, 229 – 231. doi: 10.1038/321229a0 .

    ADS  Google Scholar 

  • Däppen, W., Gough, D.O., Thompson, M.J.: 1988, Further progress on the helium abundance determination. In: Rolfe, E.J. (ed.) Seismology of the Sun and Sun-Like Stars SP-286, ESA, Noordwijk, 505 – 510.

    Google Scholar 

  • Däppen, W., Gough, D.O., Kosovichev, A.G., Thompson, M.J.: 1991, A new inversion for the hydrostatic stratification of the Sun. In: Gough, D., Toomre, J. (eds.) Challenges to Theories of the Structure of Moderate-Mass Stars, Lecture Notes in Phys. 388, Springer, Berlin, 111. doi: 10.1007/3-540-54420-8_57 .

    Google Scholar 

  • Deubner, F.-L.: 1975, Observations of low wavenumber nonradial eigenmodes of the Sun. Astron. Astrophys. 44, 371 – 375.

    ADS  Google Scholar 

  • Di Mauro, M.P., Christensen-Dalsgaard, J., Rabello-Soares, M.C., Basu, S.: 2002, Inferences on the solar envelope with high-degree modes. Astron. Astrophys. 384, 666 – 677. doi: 10.1051/0004-6361:20020020 .

    ADS  Google Scholar 

  • Dicke, R.H.: 1967, The solar spin-down problem. Astrophys. J. Lett. 149, L121. doi: 10.1086/180072 .

    ADS  Google Scholar 

  • Dicke, R.H.: 1970, The solar oblateness and the gravitational quadrupole moment. Astrophys. J. 159, 1. doi: 10.1086/150286 .

    ADS  Google Scholar 

  • Dicke, R.H., Goldenberg, H.M.: 1967, Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313 – 316. doi: 10.1103/PhysRevLett.18.313 .

    ADS  Google Scholar 

  • Dicke, R.H., Goldenberg, H.M.: 1974, The oblateness of the Sun. Astrophys. J. Suppl. Ser. 27, 131. doi: 10.1086/190292 .

    ADS  Google Scholar 

  • Doğan, G., Bonanno, A., Christensen-Dalsgaard, J.: 2010, Near-surface effects and solar-age determination. arXiv:1004.2215 .

  • Drake, J.J., Testa, P.: 2005, The ‘solar model problem’ solved by the abundance of neon in nearby stars. Nature 436, 525 – 528. doi: 10.1038/nature03803 .

    ADS  Google Scholar 

  • Duvall, T.L. Jr., Harvey, J.W.: 1983, Observations of solar oscillations of low and intermediate degree. Nature 302, 24 – 27. doi: 10.1038/302024a0 .

    ADS  Google Scholar 

  • Duvall, T.L. Jr., Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W., Leibacher, J.W.: 1984, Internal rotation of the Sun. Nature 310, 22 – 25. doi: 10.1038/310022a0 .

    ADS  Google Scholar 

  • Dziembowski, W.A., Goode, P.R.: 2004, Helioseismic probing of solar variability: the formalism and simple assessments. Astrophys. J. 600, 464 – 479. doi: 10.1086/379708 .

    ADS  Google Scholar 

  • Dziembowski, W.A., Goode, P.R.: 2005, Sources of oscillation frequency increase with rising solar activity. Astrophys. J. 625, 548 – 555. doi: 10.1086/429712 .

    ADS  Google Scholar 

  • Dziembowski, W.A., Moskalik, P., Pamyatnykh, A.A.: 1993, The opacity mechanism in b-type stars – part two – excitation of high-order G-modes in main sequence stars. Mon. Not. Roy. Astron. Soc. 265, 588.

    ADS  Google Scholar 

  • Dziembowski, W.A., Moskalik, P., Pamyatnykh, A.A.: 1994, G-mode instability in the main sequence B-type stars. In: Balona, L.A., Henrichs, H.F., Le Contel, J.M. (eds.) Pulsation; Rotation; and Mass Loss in Early-Type Stars, IAU Symp. 162, Kluwer, Dordrecht, 69.

    Google Scholar 

  • Dziembowski, W.A., Pamyatnykh, A.A.: 1993, The opacity mechanism in B-type stars. I – Unstable modes in Beta Cephei star models. Mon. Not. Roy. Astron. Soc. 262, 204 – 212.

    ADS  Google Scholar 

  • Dziembowski, W.A., Pamyatnykh, A.A., Sienkiewicz, R.: 1990, Solar model from helioseismology and the neutrino flux problem. Mon. Not. Roy. Astron. Soc. 244, 542 – 550.

    ADS  Google Scholar 

  • Dziembowski, W.A., Fiorentini, G., Ricci, B., Sienkiewicz, R.: 1999, Helioseismology and the solar age. Astron. Astrophys. 343, 990 – 996.

    ADS  Google Scholar 

  • Elliott, J.R.: 1995, Opacity determination in the solar radiative interior. Mon. Not. Roy. Astron. Soc. 277, 1567.

    ADS  Google Scholar 

  • Elliott, J.R., Gough, D.O., Sekii, T.: 1998, Helioseismic determination of the solar tachocline thickness. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-like Stars SP-418, ESA, Noordwijk, 763.

    Google Scholar 

  • Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., New, R., Wheeler, S.J., Gough, D.O.: 1995, Slow rotation of the Sun’s interior. Nature 376, 669 – 672.

    ADS  Google Scholar 

  • Emilio, M., Bush, R.I., Kuhn, J., Scherrer, P.: 2007, A changing solar shape. Astrophys. J. Lett. 660, L161 – L163. doi: 10.1086/518212 .

    ADS  Google Scholar 

  • Faulkner, J., Gough, D.O., Vahia, M.N.: 1986, Weakly interacting massive particles and solar oscillations. Nature 321, 226 – 229. doi: 10.1038/321226a0 .

    ADS  Google Scholar 

  • Fivian, M.D., Hudson, H.S., Lin, R.P., Zahid, H.J.: 2008, A large excess in apparent solar oblateness due to surface magnetism. Science 322, 560 – 562. doi: 10.1126/science.1160863 .

    ADS  Google Scholar 

  • Fossat, E., Grec, G., Pomerantz, M.: 1981, Solar pulsations observed from the geographic South Pole – Initial results. Solar Phys. 74, 59 – 63. doi: 10.1007/BF00151274 .

    ADS  Google Scholar 

  • Foukal, P., Fröhlich, C., Spruit, H., Wigley, T.M.L.: 2006, Variations in solar luminosity and their effect on the Earth’s climate. Nature 443, 161 – 166. doi: 10.1038/nature05072 .

    ADS  Google Scholar 

  • Fröhlich, C.: 2011, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. doi: 10.1007/s11214-011-9780-1 .

    Google Scholar 

  • Gilliland, R.L., Faulkner, J., Press, W.H., Spergel, D.N.: 1986, Solar models with energy transport by weakly interacting particles. Astrophys. J. 306, 703 – 709. doi: 10.1086/164380 .

    ADS  Google Scholar 

  • Gizon, L., Schunker, H., Baldner, C.S., Basu, S., Birch, A.C., Bogart, R.S., Braun, D.C., Cameron, R., Duvall, T.L., Hanasoge, S.M., Jackiewicz, J., Roth, M., Stahn, T., Thompson, M.J., Zharkov, S.: 2009, Helioseismology of sunspots: a case study of NOAA region 9787. Space Sci. Rev. 144, 249 – 273. doi: 10.1007/s11214-008-9466-5 .

    ADS  Google Scholar 

  • Goode, P.R., Didkovsky, L.V., Libbrecht, K.G., Woodard, M.F.: 2002, Evolution of the Sun’s near-surface asphericities over the activity cycle. Adv. Space Res. 29, 1889 – 1898. doi: 10.1016/S0273-1177(02)00240-5 .

    ADS  Google Scholar 

  • Gough, D., Hindman, B.W.: 2010, Helioseismic detection of deep meridional flow. Astrophys. J. 714, 960 – 970. doi: 10.1088/0004-637X/714/1/960 .

    ADS  Google Scholar 

  • Gough, D.O.: 1977, Random remarks on solar hydrodynamics. In: Bonnet, R.M., Delache, P. (eds.) The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, IAU Colloq. 36, G. de Bussac, Clermont-Ferrand, 3 – 36.

    Google Scholar 

  • Gough, D.O.: 1978, The relevance of solar oscillations to theories of the rotation of the Sun. In: Belvedere, G., Paternò, L. (eds.) Proc. EPS Workshop on Solar Rotation, Catania Univ., 87 – 103.

  • Gough, D.O.: 1981, A new measure of the solar rotation. Mon. Not. Roy. Astron. Soc. 196, 731 – 745.

    ADS  Google Scholar 

  • Gough, D.O.: 1982a, A review of the theory of solar oscillations and its implications concerning the internal structure of the Sun. In: Cox, J.P., Hansen, C.J. (eds.) Pulsations in Classical and Cataclysmic Variable Stars, JILA, Boulder, 117.

    Google Scholar 

  • Gough, D.O.: 1982b, Inferences from solar oscillations. Ir. Astron. J. 15, 118 – 119.

    Google Scholar 

  • Gough, D.O.: 1983a, Our first inferences from helioseismology. Phys. Bull. 34, 502 – 507.

    ADS  Google Scholar 

  • Gough, D.O.: 1983b, Solar structure: a bridge in a gap in solar oscillations. Nature 302, 18. doi: 10.1038/302018a0 .

    ADS  Google Scholar 

  • Gough, D.O.: 1983c, The protosolar helium abundance. In: Shaver, P.A., Kunth, D., Kjar, K. (eds.) Workshop on the Primordial Helium (A83-50030 24-90), ESO, Garching, 117 – 136.

    Google Scholar 

  • Gough, D.O.: 1984a, Helioseismology. Observatory 104, 118 – 119.

    Google Scholar 

  • Gough, D.O.: 1984b, Towards a solar model. Mem. Soc. Astron. Ital. 55, 13.

    ADS  Google Scholar 

  • Gough, D.O.: 1986, EBK quantization of stellar waves. In: Osaki, Y. (ed.) Hydrodynamic and Magnetodynamic Problems in the Sun and Stars, Univ. Tokyo, 117 – 143.

  • Gough, D.O.: 1990, The internal structure of late-type main-sequence stars. In: Gustafsson, B., Nissen, P.E. (eds.) Astrophysics: Recent Progress and Future Possibilities (A91-15054 03-90), Kongelige Danske Videnskabernes Selskab, Copenhagen, 13 – 50.

    Google Scholar 

  • Gough, D.O.: 1995, Prospects for asteroseismic inference. In: Ulrich, R.K., Rhodes, E.J. Jr., Däppen, W. (eds.) GONG 1994: Helio- and Astro-Seismology from the Earth and Space CS-76, Astron. Soc. Pac., San Francisco, 551.

    Google Scholar 

  • Gough, D.O.: 2004, The power of helioseismology to address issues of fundamental physics. In: Celebonović, V., Gough, D., Däppen, W. (eds.) Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter CS-731, AIP, New York, 119 – 138. doi: 10.1063/1.1828398 .

    Google Scholar 

  • Gough, D.O.: 2006, Helioseismological determination of the state of the solar interior. In: Lacoste, H., Ouwehand, L. (eds.) SOHO-17: 10 Years of SOHO and Beyond SP-617, ESA, Noordwijk, 1 – 17.

    Google Scholar 

  • Gough, D.O.: 2012a, Heliophysics gleaned from seismology. In: Shibahashi, H., Takata, M. (eds.) Progress in Solar/Stellar Physics with Helio- and Asteroseismology; Proc. 65th Fujihara Seminar, Astron. Soc. Pac., San Francisco, in press.

  • Gough, D.O.: 2012b, Pattern formation in rapidly oscillating peculiar A stars. Geophys. Astrophys. Fluid Dyn. 106, 429 – 449.

    ADS  Google Scholar 

  • Gough, D.O.: 2012c, How oblate is the Sun? Science. in press

  • Gough, D.O., Kosovichev, A.G.: 1988, An attempt to understand the Stanford p-mode data. In: Rolfe, E.J. (ed.) Seismology of the Sun and Sun-Like Stars SP-286, ESA, Noordwijk, 195 – 201.

    Google Scholar 

  • Gough, D.O., Kosovichev, A.G.: 1990, Using helioseismic data to probe the hydrogen abundance in the solar core. In: Berthomieu, G., Cribier, M. (eds.) Inside the Sun, IAU Colloq. 121, Kluwer, Dordrecht, 327. Astrophys. Space Sci. Lib. 159.

    Google Scholar 

  • Gough, D.O., McIntyre, M.E.: 1998, Inevitability of a magnetic field in the Sun’s radiative interior. Nature 394, 755 – 757. doi: 10.1038/29472 .

    ADS  Google Scholar 

  • Gough, D.O., Scherrer, P.H.: 2002, The solar interior. In: Bleeker, J.A., Geiss, J., Huber, M.C.E. (eds.) The Century of Space Science I. Kluwer, Dordrecht, 1035.

    Google Scholar 

  • Gough, D.O., Sekii, T., Stark, P.B.: 1996, Inferring spatial variation of solar properties from helioseismic data. Astrophys. J. 459, 779. doi: 10.1086/176942 .

    ADS  Google Scholar 

  • Gough, D.O., Kosovichev, A.G., Toomre, J., Anderson, E., Antia, H.M., Basu, S., Chaboyer, B., Chitre, S.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Eff-Darwich, A., Elliott, J.R., Giles, P.M., Goode, P.R., Guzik, J.A., Harvey, J.W., Hill, F., Leibacher, J.W., Monteiro, M.J.P.F.G., Richard, O., Sekii, T., Shibahashi, H., Takata, M., Thompson, M.J., Vauclair, S., Vorontsov, S.V.: 1996, The seismic structure of the Sun. Science 272, 1296 – 1300. doi: 10.1126/science.272.5266.1296 .

    ADS  Google Scholar 

  • Grec, G., Fossat, E., Pomerantz, M.: 1980, Solar oscillations – Full disk observations from the geographic South Pole. Nature 288, 541 – 544. doi: 10.1038/288541a0 .

    ADS  Google Scholar 

  • Grevesse, N., Noels, A.: 1993, Cosmic abundances of the elements. In: Prantzos, N., Vangioni-Flam, E., Casse, M. (eds.) Origin and Evolution of the Elements, Cambridge Univ. Press, Cambridge, 15 – 25.

    Google Scholar 

  • Grevesse, N., Sauval, A.J.: 1998, Standard solar composition. Space Sci. Rev. 85, 161 – 174. doi: 10.1023/A:1005161325181 .

    ADS  Google Scholar 

  • Grevesse, N., Asplund, M., Sauval, A.J., Scott, P.: 2011, The new solar composition and the solar metallicity. In: Miralles, M.P., Sánchez Almeida, J. (eds.) The Sun, the Solar Wind, and the Heliosphere, Springer, Berlin, 51.

    Google Scholar 

  • Guzik, J.A., Watson, L.S., Cox, A.N.: 2005, Can enhanced diffusion improve helioseismic agreement for solar models with revised abundances? Astrophys. J. 627, 1049 – 1056. doi: 10.1086/430438 .

    ADS  Google Scholar 

  • Guzik, J.A., Watson, L.S., Cox, A.N.: 2006, Implications of revised solar abundances for helioseismology Mem. Soc. Astron. Ital. 77, 389.

    ADS  Google Scholar 

  • Hampel, W., Heusser, G., Kiko, J., Kirsten, T., Laubenstein, M., Pernicka, E., Rau, W., Rönn, U., Schlosser, C., Wojcik, M., Zakharov, Y., v. Ammon, R., Ebert, K.H., Fritsch, T., Heidt, D., Henrich, E., Stieglitz, L., Weirich, F., Balata, M., Sann, M., Hartmann, F.X., Bellotti, E., Cattadori, C., Cremonesi, O., Ferrari, N., Fiorini, E., Zanotti, L., Altmann, M., v. Feilitzsch, F., Mößbauer, R., Berthomieu, G., Schatzman, E., Carmi, I., Dostrovsky, I., Bacci, C., Belli, P., Bernabei, R., D’Angelo, S., Paoluzi, L., Bevilacqua, A., Cribier, M., Gosset, L., Rich, J., Spiro, M., Tao, C., Vignaud, D., Boger, J., Hahn, R.L., Rowley, J.K., Stoenner, R.W., Weneser, J.: 1996, GALLEX solar neutrino observations: Results for GALLEX III. Phys. Lett. B 388, 384 – 396. doi: 10.1016/S0370-2693(96)01121-5 .

    ADS  Google Scholar 

  • Hindman, B.W., Haber, D.A., Toomre, J.: 2009, Subsurface circulations within active regions. Astrophys. J. 698, 1749 – 1760. doi: 10.1088/0004-637X/698/2/1749 .

    ADS  Google Scholar 

  • Houdek, G., Gough, D.O.: 2007, An asteroseismic signature of helium ionisation. Mon. Not. Roy. Astron. Soc. 375, 861 – 880. doi: 10.1111/j.1365-2966.2006.11325.x .

    ADS  Google Scholar 

  • Houdek, G., Gough, D.O.: 2011, On the seismic age and heavy-element abundance of the Sun. Mon. Not. Roy. Astron. Soc. 418, 1217 – 1230. doi: 10.1111/j.1365-2966.2011.19572.x .

    ADS  Google Scholar 

  • Howard, L.N., Moore, D.W., Spiegel, E.A.: 1967, Nature 214, 1297.

    ADS  Google Scholar 

  • Howe, R., Thompson, M.J.: 1996, On the use of the error correlation function in helioseismic inversions. Mon. Not. Roy. Astron. Soc. 281, 1385.

    ADS  Google Scholar 

  • Howe, R., Komm, R., Hill, F., Ulrich, R., Haber, D.A., Hindman, B.W., Schou, J., Thompson, M.J.: 2006a, Large-scale zonal flows near the solar surface. Solar Phys. 235, 1 – 15. doi: 10.1007/s11207-006-0117-2 .

    ADS  Google Scholar 

  • Howe, R., Rempel, M., Christensen-Dalsgaard, J., Hill, F., Komm, R., Larsen, R.M., Schou, J., Thompson, M.J.: 2006b, Solar convection zone dynamics: how sensitive are inversions to subtle dynamo features? Astrophys. J. 649, 1155 – 1168. doi: 10.1086/506931 .

    ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J.: 1991, Opacities for the solar radiative interior. Astrophys. J. 371, 408 – 417. doi: 10.1086/169902 .

    ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J.: 1996, Updated opal opacities. Astrophys. J. 464, 943. doi: 10.1086/177381 .

    ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J., Wilson, B.G.: 1990, Opacities for classical Cepheid models. Astrophys. J. 360, 221 – 226. doi: 10.1086/169110 .

    ADS  Google Scholar 

  • Ilonidis, S., Zhao, J., Kosovichev, A.: 2011, Detection of emerging sunspot regions in the solar interior. Science 333, 993. doi: 10.1126/science.1206253 .

    ADS  Google Scholar 

  • Jacobsen, B., Yin, Q.-Z., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon, I.D., Palme, H.: 2008, 26Al 26Mg and 207Pb 206Pb systematics of Allende CAIs: canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353 – 364. doi: 10.1016/j.epsl.2008.05.003 .

    ADS  Google Scholar 

  • Jacobsen, B., Yin, Q.-Z., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon, I.D., Palme, H.: 2009, Erratum to “26Al 26Mg and 207Pb 206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated” [Earth Planet Sci. Lett. 272 (2008) 353 – 364]. Earth Planet. Sci. Lett. 277, 549. doi: 10.1016/j.epsl.2008.12.001 .

    ADS  Google Scholar 

  • Kiriakidis, M., El Eid, M.F., Glatzel, W.: 1992, Heavy element opacities and the pulsations of Beta Cepheid stars. Mon. Not. Roy. Astron. Soc. 255, 1P – 5P.

    ADS  Google Scholar 

  • Kitiashvili, I.N., Kosovichev, A.G., Wray, A.A., Mansour, N.N.: 2009, Traveling waves of magnetoconvection and the origin of the Evershed effect in sunspots. Astrophys. J. Lett. 700, L178 – L181. doi: 10.1088/0004-637X/700/2/L178 .

    ADS  Google Scholar 

  • Kitiashvili, I.N., Bellot Rubio, L.R., Kosovichev, A.G., Mansour, N.N., Sainz Dalda, A., Wray, A.A.: 2010, Explanation of the sea-serpent magnetic structure of sunspot penumbrae. Astrophys. J. Lett. 716, L181 – L184. doi: 10.1088/2041-8205/716/2/L181 .

    ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2006, Helioseismic sensing of the solar cycle. Adv. Space Res. 38, 845 – 855. doi: 10.1016/j.asr.2005.07.034 .

    ADS  Google Scholar 

  • Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38, 1706. doi: 10.1029/2010GL045777 .

    ADS  Google Scholar 

  • Korzennik, S.G., Ulrich, R.K.: 1989, Seismic analysis of the solar interior. I – Can opacity changes improve the theoretical frequencies? Astrophys. J. 339, 1144 – 1155. doi: 10.1086/167369 .

    ADS  Google Scholar 

  • Kosovichev, A.G.: 2009, Photospheric and subphotospheric dynamics of emerging magnetic flux. Space Sci. Rev. 144, 175 – 195. doi: 10.1007/s11214-009-9487-8 .

    ADS  Google Scholar 

  • Kosovichev, A.G., Duvall, T.L. Jr: 2011, Investigation of a sunspot complex by helioseismology. In: Choudhary, D.P., Strassmeier, K.G. (eds.) The Physics of Sun and Star Spots, IAU Symp. 273, Cambridge Univ. Press, Cambridge, 320 – 324. doi: 10.1017/S1743921311015456 .

    Google Scholar 

  • Kosovichev, A.G., Christensen-Dalsgaard, J., Däppen, W., Dziembowski, W.A., Gough, D.O., Thompson, M.J.: 1992, Sources of uncertainty in direct seismological measurements of the solar helium abundance. Mon. Not. Roy. Astron. Soc. 259, 536 – 558.

    ADS  Google Scholar 

  • Kuhn, J.R., Bush, R., Emilio, M., Scholl, I.F.: 2012, The precise solar shape and its variability. Science. doi: 10.1126/science.1223231 .

    Google Scholar 

  • Lefebvre, S., Kosovichev, A.G.: 2005, Changes in the subsurface stratification of the Sun with the 11-year activity cycle. Astrophys. J. Lett. 633, L149 – L152. doi: 10.1086/498305 .

    ADS  Google Scholar 

  • Lefebvre, S., Kosovichev, A.G., Rozelot, J.P.: 2007, Helioseismic test of nonhomologous solar radius changes with the 11 year activity cycle. Astrophys. J. Lett. 658, L135 – L138. doi: 10.1086/515394 .

    ADS  Google Scholar 

  • Lodders, K., Palme, H., Gail, H.-P.: 2009, Abundances of the elements in the solar system. In: Trümper, J.E. (ed.) Landolt-Börnstein – Group VI Astron. Astrophys. Numerical Data and Functional Relationships in Science and Technology Volume, Springer, Berlin, 44. doi: 10.1007/978-3-540-88055-4_34 .

    Google Scholar 

  • Lopes, I.P., Gough, D.O.: 2001, Seismology of stellar envelopes: probing the outer layers of a star through the scattering of acoustic waves. Mon. Not. Roy. Astron. Soc. 322, 473 – 485. doi: 10.1046/j.1365-8711.2001.03940.x .

    ADS  Google Scholar 

  • Moskalik, P., Buchler, J.R., Marom, A.: 1992, Toward a resolution of the bump and beat Cepheid mass discrepancies. Astrophys. J. 385, 685 – 693. doi: 10.1086/170975 .

    ADS  Google Scholar 

  • Moskalik, P., Dziembowski, W.A.: 1992, New opacities and the origin of the Beta Cephei pulsation. Astron. Astrophys. 256, L5 – L8.

    ADS  Google Scholar 

  • Mussack, K., Däppen, W.: 2010, Dynamic screening in solar and stellar nuclear reactions. Astrophys. Space Sci. 328, 153 – 156. doi: 10.1007/s10509-009-0245-x .

    ADS  Google Scholar 

  • Mussack, K., Däppen, W.: 2011, Dynamic screening correction for solar p–p reaction rates. Astrophys. J. 729, 96. doi: 10.1088/0004-637X/729/2/96 .

    ADS  Google Scholar 

  • Mussack, K., Gough, D.O.: 2009, Measuring solar abundances with seismology. In: Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., Hill, F. (eds.) Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21 CS-416, Astron. Soc. Pac., San Francisco, 203.

    Google Scholar 

  • Pijpers, F.P.: 1998, Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. Roy. Astron. Soc. 297, L76 – L80. doi: 10.1046/j.1365-8711.1998.01801.x .

    ADS  Google Scholar 

  • Ramsey, A.S.: 1937, Dynamics Part II, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Richard, O., Dziembowski, W.A., Sienkiewicz, R., Goode, P.R.: 1998, Precise determination of the solar helium abundance by helioseismology. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-Like Stars SP-418, ESA, Noordwijk, 517.

    Google Scholar 

  • Rogers, F.J., Nayfonov, A.: 2002, Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064 – 1074. doi: 10.1086/341894 .

    ADS  Google Scholar 

  • Saio, H.: 1992, Opacity in the solar radiative interior inferred from 5-min oscillations. Mon. Not. Roy. Astron. Soc. 258, 491 – 496.

    ADS  Google Scholar 

  • Salpeter, E.E.: 1954, Electron screening and thermonuclear reactions. Aust. J. Phys. 7, 373.

    ADS  MATH  Google Scholar 

  • Schou, J., Woodard, M.F., Birch, A.C.: 2009, Large-scale flows from eigenfunction fitting. Bull. Am. Astron. Soc. 40, 07.05.

    Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390 – 417. doi: 10.1086/306146 .

    ADS  Google Scholar 

  • Simon, N.R.: 1982, A plea for reexamining heavy element opacities in stars. Astrophys. J. Lett. 260, L87 – L90. doi: 10.1086/183876 .

    ADS  Google Scholar 

  • Spergel, D.N., Press, W.H.: 1985, Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior. Astrophys. J. 294, 663 – 673. doi: 10.1086/163336 .

    ADS  Google Scholar 

  • Spiegel, E.A., Zahn, J.-P.: 1992, The solar tachocline. Astron. Astrophys. 265, 106 – 114.

    ADS  Google Scholar 

  • Steigman, G.: 2007, Primordial nucleosynthesis in the precision cosmology era. Annu. Rev. Nucl. Part. Sci. 57, 463 – 491. doi: 10.1146/annurev.nucl.56.080805.140437 .

    ADS  Google Scholar 

  • Stein, R.F., Nordlund, A.: 1998, Simulations of solar granulation. I. General properties. Astrophys. J. 499, 914. doi: 10.1086/305678 .

    ADS  Google Scholar 

  • Takata, M., Gough, D.O.: 2001, The influence of uncertainties in the Sun’s radius on inversions for the solar structure. In: Wilson, A., Pallé, P.L. (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium SP-464, ESA, Noordwijk, 543 – 546.

    Google Scholar 

  • Takata, M., Gough, D.O.: 2003, The seismic radius of the Sun, and structure inversions. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future SP-517, ESA, Noordwijk, 397 – 400.

    Google Scholar 

  • Tassoul, M.: 1980, Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469 – 490. doi: 10.1086/190678 .

    ADS  Google Scholar 

  • Taylor, S.F., Varsik, J.R., Woodard, M.F., Libbrecht, K.G.: 1998, Spatial dependence of solar-cycle changes in the Sun’s luminosity. Solar Phys. 178, 1 – 12.

    ADS  Google Scholar 

  • Tomczyk, S., Schou, J., Thompson, M.J.: 1995, Measurement of the rotation rate in the deep solar interior. Astrophys. J. Lett. 448, L57. doi: 10.1086/309598 .

    ADS  Google Scholar 

  • Tomczyk, S., Streander, K., Card, G., Elmore, D., Hull, H., Cacciani, A.: 1995, An instrument to observe low-degree solar oscillations. Solar Phys. 159, 1 – 21. doi: 10.1007/BF00733027 .

    ADS  Google Scholar 

  • Tripathy, S.C., Christensen-Dalsgaard, J.: 1998, Opacity effects on the solar interior. I. Solar structure. Astron. Astrophys. 337, 579 – 590.

    ADS  Google Scholar 

  • Tripathy, S.C., Basu, S., Christensen-Dalsgaard, J.: 1998, Helioseismic determination of opacity corrections. In: Provost, J., Schmider, F.-X. (eds.) Sounding Solar and Stellar Interiors, IAU Symp. 181, Poster volume, Université de Nice, Côte d’Azur, 129 – 130.

    Google Scholar 

  • Turck-Chièze, S., Däppen, W., Fossat, E., Provost, J., Schatzman, E., Vignaud, D.: 1993, The solar interior. Phys. Rep. 230, 57 – 235. doi: 10.1016/0370-1573(93)90020-E .

    ADS  Google Scholar 

  • Ulrich, R.K., Rhodes, E.J. Jr.: 1977, The sensitivity of nonradial P mode eigenfrequencies to solar envelope structure. Astrophys. J. 218, 521 – 529. doi: 10.1086/155705 .

    ADS  Google Scholar 

  • Vandakurov, Y.V.: 1967, The frequency distribution of stellar oscillations Astron. Ž. 44, 786.

    ADS  Google Scholar 

  • Verner, G.A., Chaplin, W.J., Elsworth, Y.: 2006, BiSON data show change in solar structure with magnetic activity. Astrophys. J. Lett. 640, L95 – L98. doi: 10.1086/503101 .

    ADS  Google Scholar 

  • Vorontsov, S.V., Baturin, V.A., Pamyatnykh, A.A.: 1992, Seismology of the solar envelope – towards the calibration of the equation of state. Mon. Not. Roy. Astron. Soc. 257, 32 – 46.

    ADS  Google Scholar 

  • Vorontsov, S.V., Christensen-Dalsgaard, J., Schou, J., Strakhov, V.N., Thompson, M.J.: 2002, Helioseismic measurement of solar torsional oscillations. Science 296, 101 – 103. doi: 10.1126/science.1069190 .

    ADS  Google Scholar 

  • Weiss, N.O., Thomas, J.H., Brummell, N.H., Tobias, S.M.: 2004, The origin of penumbral structure in sunspots: downward pumping of magnetic flux. Astrophys. J. 600, 1073 – 1090. doi: 10.1086/380091 .

    ADS  Google Scholar 

  • Willson, R.C., Hudson, H.S.: 1988, Solar luminosity variations in solar cycle 21. Nature 332, 810 – 812. doi: 10.1038/332810a0 .

    ADS  Google Scholar 

  • Zhao, J., Kosovichev, A.G.: 2003, Helioseismic observation of the structure and dynamics of a rotating sunspot beneath the solar surface. Astrophys. J. 591, 446 – 453. doi: 10.1086/375343 .

    ADS  Google Scholar 

  • Zhao, J., Kosovichev, A.G., Duvall, T.L. Jr.: 2001, Investigation of mass flows beneath a sunspot by time-distance helioseismology. Astrophys. J. 557, 384 – 388. doi: 10.1086/321491 .

    ADS  Google Scholar 

  • Zhao, J., Kosovichev, A.G., Sekii, T.: 2010, High-resolution helioseismic imaging of subsurface structures and flows of a solar active region observed by Hinode. Astrophys. J. 708, 304 – 313. doi: 10.1088/0004-637X/708/1/304 .

    ADS  Google Scholar 

  • Zhao, J., Couvidat, S., Bogart, R.S., Parchevsky, K.V., Birch, A.C., Duvall, T.L., Beck, J.G., Kosovichev, A.G., Scherrer, P.H.: 2011, Time-distance helioseismology data-analysis pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and its initial results. Solar Phys. 275, 375 – 390. doi: 10.1007/s11207-011-9757-y .

    ADS  Google Scholar 

  • Zweibel, E.G., Gough, D.O.: 1995, Is there a seismic signature of the Sun’s magnetic field? In: Hoeksema, J.T., Domingo, V., Fleck, B., Battrick, B. (eds.) Helioseismology SP-376, ESA, Noordwijk, 73.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Jørgen Christensen-Dalsgaard, Werner Däppen, Günter Houdek, and Sasha Kosovichev for interesting discussion. I thank Jeannette Gilbert and Paula Younger for typing the first draft of this paper, Günter Houdek for providing Figure 4, and Amanda Smith for her help in producing Figures 1 and 6. I thank the Leverhulme Trust for an Emeritus Fellowship, and P.H. Scherrer for support from HMI NASA contract NAS5-02139. This article has benefited from comments on the first draft by the referee who raised the matter of the reliability of the equation of state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Gough.

Additional information

Invited Article.

Solar Dynamics and Magnetism from the Interior to the Atmosphere

Guest Editors: R. Komm, A. Kosovichev, D. Longcope, and N. Mansour

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gough, D. What Have We Learned from Helioseismology, What Have We Really Learned, and What Do We Aspire to Learn?. Sol Phys 287, 9–41 (2013). https://doi.org/10.1007/s11207-012-0099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0099-1

Keywords

Navigation