Skip to main content

A Bayesian Analysis of the Correlations Among Sunspot Cycles

Abstract

Sunspot numbers form a comprehensive, long-duration proxy of solar activity and have been used numerous times to empirically investigate the properties of the solar cycle. A number of correlations have been discovered over the 24 cycles for which observational records are available. Here we carry out a sophisticated statistical analysis of the sunspot record that reaffirms these correlations, and sets up an empirical predictive framework for future cycles. An advantage of our approach is that it allows for rigorous assessment of both the statistical significance of various cycle features and the uncertainty associated with predictions. We summarize the data into three sequential relations that estimate the amplitude, duration, and time of rise to maximum for any cycle, given the values from the previous cycle. We find that there is no indication of a persistence in predictive power beyond one cycle, and we conclude that the dynamo does not retain memory beyond one cycle. Based on sunspot records up to October 2011, we obtain, for Cycle 24, an estimated maximum smoothed monthly sunspot number of 97±15, to occur in January – February 2014 ± six months.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Benestad, R.E.: 2005, Geophys. Res. Lett. 32, L15714.

    ADS  Article  Google Scholar 

  2. Bonev, B.P., Penev, K.M., Sello, S.: 2003, Astrophys. J. Lett. 605, L81.

    ADS  Article  Google Scholar 

  3. Charbonneau, P.: 2007, Adv. Space Res. 39, 11 1661.

    Article  Google Scholar 

  4. Charbonneau, P., Dikpati, M.: 2000, Astrophys. J. 543, 1027.

    ADS  Article  Google Scholar 

  5. Choudhuri, A.R.: 1992, Astron. Astrophys. 253, 277.

    ADS  MATH  Google Scholar 

  6. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Phys. Rev. Lett. 98, 131103.

    ADS  Article  Google Scholar 

  7. Dikpati, M., Gilman, P.A.: 2006, Astrophys. J. 649, 498.

    ADS  Article  Google Scholar 

  8. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Geophys. Res. Lett. 33, L05102.

    Article  Google Scholar 

  9. Esch, D.N., Connors, A., Karovska, M., van Dyk, D.A.: 2004, Astrophys. J. 610, 1213.

    ADS  Article  Google Scholar 

  10. Gelfand, A.E., Smith, A.F.M.: 1990, J. Am. Stat. Assoc. 85, 398.

    MathSciNet  MATH  Article  Google Scholar 

  11. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: 2004, Bayesian Data Analysis, 2nd edn., CRC Press, London.

    MATH  Google Scholar 

  12. Geman, S., Geman, D.: 1984, IEEE Trans. Pattern Anal. Mach. Intell. 6, 721 – 741.

    MATH  Article  Google Scholar 

  13. Gil-Alana, L.A.: 2009, Solar Phys. 257, 371, ADS:  2009SoPh..257..371G , doi: 10.1007/s11207-009-9390-1 .

    ADS  Article  Google Scholar 

  14. Hastings, W.K.: 1970, Biometrika 57, 97 – 109.

    MATH  Article  Google Scholar 

  15. Hathaway, D., Wilson, R.M.: 2006, Geophys. Res. Lett. 33, L18101.

    ADS  Article  Google Scholar 

  16. Hathaway, D., Wilson, R.M., Reichmann, D.J.: 1994, Solar Phys. 151, 177, ADS:  1994SoPh..151..177H , doi: 10.1007/BF00654090 .

    ADS  Article  Google Scholar 

  17. Hathaway, D., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357, ADS: 2002SoPh..211..357H , doi: 10.1023/A:1022425402664 .

    ADS  Article  Google Scholar 

  18. Hill, F., Howe, R., Komm, R., Hernández, I.G., Kholikov, S., Leibacher, J.: 2010, In: Brummell, N.H., Brun, A.S., Miesch, M.S., Ponty, Y. (eds.) Astrophysical Dynamics: From Stars to Galaxies, Proc. IAU Symp. 271, Cambridge University Press, Cambridge, 15.

    Google Scholar 

  19. Hudson, H.: 2007, Astrophys. J. Lett. 663, L45.

    ADS  Article  Google Scholar 

  20. Kakad, B.: 2011, Solar Phys. 270, 393, ADS: 2011SoPh..270..393K , doi: 10.1007/s11207-011-9726-5 .

    ADS  Article  Google Scholar 

  21. Kane, R.P.: 2001, Solar Phys. 202, 395, ADS: 2001SoPh..202..395K , doi: 10.1023/A:1012211803591 .

    ADS  Article  Google Scholar 

  22. Kane, R.P.: 2008, Solar Phys. 248, 203, ADS: 2008SoPh..248..203K , doi: 10.1007/s11207-008-9125-8 .

    ADS  Article  Google Scholar 

  23. Kendall, M.: 1975, Rank Correlation Methods, Griffin, London.

    MATH  Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: 1953, J. Chem. Phys. 21, 1087 – 1092.

    ADS  Article  Google Scholar 

  25. Noble, P.L., Wheatland, M.S.: 2012, Solar Phys. 276, 363, ADS: 2012SoPh..276..363N , doi: 10.1007/s11207-011-9884-5 .

    ADS  Article  Google Scholar 

  26. Park, T., van Dyk, D.A., Siemiginowska, A.: 2008, Astrophys. J. 688, 807.

    ADS  Article  Google Scholar 

  27. Pesnell, W.D.: 2008, Solar Phys. 252, 209, ADS:  2008SoPh..252..209P , doi: 10.1007/s11207-008-9252-2 .

    ADS  Article  Google Scholar 

  28. Ramesh, K.B., Lakshmi, N.B.: 2012, Solar Phys. 276, 395, ADS: 2012SoPh..276..395R , doi: 10.1007/s11207-011-9866-7 .

    ADS  Article  Google Scholar 

  29. Sabarinath, A., Anilkumar, A.K.: 2008, Solar Phys. 250, 183, ADS: 2008SoPh..250..183S , doi: 10.1007/s11207-008-9209-5 .

    ADS  Article  Google Scholar 

  30. Schüssler, M.: 2007, Astron. Nachr. 328, 1087.

    ADS  MATH  Article  Google Scholar 

  31. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Nature 431, 1084.

    ADS  Article  Google Scholar 

  32. Svalgaard, L.: 2010, arXiv: 1008.4832 .

  33. Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Astron. Astrophys. 471, 301.

    ADS  Article  Google Scholar 

  34. van Dyk, D.A., Connors, A., Kashyap, V.L., Siemiginowska, A.: 2001, Astrophys. J. 548, 224.

    ADS  Article  Google Scholar 

  35. Vaquero, J.M., Trigo, R.M.: 2008, Solar Phys. 250, 199, ADS: 2008SoPh..250..199V , doi: 10.1007/s11207-008-9211-y .

    ADS  Article  Google Scholar 

  36. Volobuev, D.M.: 2009, Solar Phys. 258, 319, ADS: 2009SoPh..258..319V , doi: 10.1007/s11207-009-9429-3 .

    ADS  Article  Google Scholar 

  37. Waldmeier, M.: 1935, Astron. Mitt. Eidgenöss. Sternwarte Zür. 14, 105.

    ADS  Google Scholar 

  38. Waldmeier, M.: 1939, Astron. Mitt. Eidgenöss. Sternwarte Zür. 14, 470.

    ADS  Google Scholar 

  39. Waldmeier, M.: 1971, Astron. Mitt. Eidgenöss. Sternwarte Zür. 304, 10.

    ADS  Google Scholar 

  40. Watari, S.: 2009, Space Weather 6, S12003.

    ADS  Article  Google Scholar 

  41. Wolf, R.: 1852, Viertel. Nat. Ges. Bern 245, 179.

    Google Scholar 

  42. Xu, T., Wu, J., Wu, Z.-S., Li, Q.: 2008, Chin. J. Astron. Astrophys. 8, 337.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CXC NASA contract NAS 8-39073 (VLK) and NSF grants DMS 04-06085 and DMS 09-07522 (DvD, YY).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, Y., van Dyk, D.A., Kashyap, V.L. et al. A Bayesian Analysis of the Correlations Among Sunspot Cycles. Sol Phys 281, 847–862 (2012). https://doi.org/10.1007/s11207-012-0090-x

Download citation

Keywords

  • Solar Activity
  • Posterior Distribution
  • Markov Chain Monte Carlo
  • Sunspot Number
  • Sunspot Cycle