Solar Orbiter

Exploring the Sun–Heliosphere Connection

Abstract

The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA’s Cosmic Vision 2015 – 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

References

  1. Acton, L., Tsuneta, S., Ogawara, Y., Bentley, R., Bruner, M., Canfield, R., Culhane, L., Doschek, G., Hiei, E., Hirayama, T.: 1992, The Yohkoh mission for high-energy solar physics. Science 258, 618 – 625. doi: 10.1126/science.258.5082.618 .

    ADS  Article  Google Scholar 

  2. Antiochos, S.K., Mikić, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow solar wind. Astrophys. J. 731, 112. doi: 10.1088/0004-637X/731/2/112 .

    ADS  Article  Google Scholar 

  3. Antonucci, E., Abbo, L., Dodero, M.A.: 2005, Slow wind and magnetic topology in the solar minimum corona in 1996 – 1997. Astron. Astrophys. 435, 699 – 711. doi: 10.1051/0004-6361:20047126 .

    ADS  Article  Google Scholar 

  4. Aschwanden, M.J.: 2006, The localization of particle acceleration sites in solar flares and CMES. Space Sci. Rev. 124, 361 – 372. doi: 10.1007/s11214-006-9095-9 .

    ADS  Article  Google Scholar 

  5. Axford, W.I., McKenzie, J.F.: 1992, The origin of high speed solar wind streams. In: Marsch, E., Schwenn, R. (eds.) Solar Wind 7 – Proc. 3rd COSPAR Coll., COSPAR CS-3, Pergamon Press, Oxford, 1 – 5.

    Google Scholar 

  6. Beck, J.G.: 2000, A comparison of differential rotation measurements. Solar Phys. 191, 47 – 70 (Invited Review).

    ADS  Article  Google Scholar 

  7. Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H.R., Ziethe, R.: 2010, BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 58, 2 – 20. doi: 10.1016/j.pss.2009.09.020 .

    ADS  Article  Google Scholar 

  8. Borovsky, J.E.: 2008, Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, 8110. doi: 10.1029/2007JA012684 .

    Article  Google Scholar 

  9. Breech, B., Matthaeus, W.H., Minnie, J., Bieber, J.W., Oughton, S., Smith, C.W., Isenberg, P.A.: 2008, Turbulence transport throughout the heliosphere. J. Geophys. Res. 113, 8105. doi: 10.1029/2007JA012711 .

    Article  Google Scholar 

  10. Brun, A.S., Miesch, M.S., Toomre, J.: 2004, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073 – 1098. doi: 10.1086/423835 .

    ADS  Article  Google Scholar 

  11. Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., Bavassano, B.: 2001, Identifying intermittency events in the solar wind. Planet. Space Sci. 49, 1201 – 1210. doi: 10.1016/S0032-0633(01)00061-7 .

    ADS  Article  Google Scholar 

  12. Cargill, P.J., Vlahos, L., Turkmani, R., Galsgaard, K., Isliker, H.: 2006, Particle acceleration in a three-dimensional model of reconnecting coronal magnetic fields. Space Sci. Rev. 124, 249 – 259. doi: 10.1007/s11214-006-9108-8 .

    ADS  Article  Google Scholar 

  13. Cirtain, J.W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: 2007, Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 – 1582. doi: 10.1126/science.1147050 .

    ADS  Article  Google Scholar 

  14. Cohen, C.M.S., Mewaldt, R.A., Leske, R.A., Cummings, A.C., Stone, E.C., Wiedenbeck, M.E., von Rosenvinge, T.T., Mason, G.M.: 2007, Solar elemental composition based on studies of solar energetic particles. Space Sci. Rev. 130, 183 – 194. doi: 10.1007/s11214-007-9218-y .

    ADS  Article  Google Scholar 

  15. Corbard, T.: 1998, Inversion des mesures heliosismologiques: la rotation interne du soleil. PhD thesis, Université de Nice.

  16. Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520 – 551. doi: 10.1086/518001 .

    ADS  Article  Google Scholar 

  17. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating – in the chromosphere. Astrophys. J. Lett. 701, L1 – L6. doi: 10.1088/0004-637X/701/1/L1 .

    ADS  Article  Google Scholar 

  18. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331, 55 – 58. doi: 10.1126/science.1197738 .

    ADS  Article  Google Scholar 

  19. Desai, M.I., Mason, G.M., Mazur, J.E., Dwyer, J.R.: 2006, The seed population for energetic particles accelerated by CME-driven shocks. Space Sci. Rev. 124, 261 – 275. doi: 10.1007/s11214-006-9109-7 .

    ADS  Article  Google Scholar 

  20. Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508 – 520. doi: 10.1086/307269 .

    ADS  Article  Google Scholar 

  21. Dikpati, M., Gilman, P.A.: 2008, Global solar dynamo models: Simulations and predictions. J. Astrophys. Astron. 29, 29 – 39. doi: 10.1007/s12036-008-0004-3 .

    ADS  Article  Google Scholar 

  22. Dodero, M.A., Antonucci, E., Giordano, S., Martin, R.: 1998, Solar wind velocity and anisotropic coronal kinetic temperature measured with the O VI doublet ratio. Solar Phys. 183, 77 – 90.

    ADS  Article  Google Scholar 

  23. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1 – 37. doi: 10.1007/BF00733425 .

    ADS  Article  Google Scholar 

  24. Drake, J.F., Cassak, P.A., Shay, M.A., Swisdak, M., Quataert, E.: 2009, A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. Lett. 700, L16 – L20. doi: 10.1088/0004-637X/700/1/L16 .

    ADS  Article  Google Scholar 

  25. Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, Energy partition in two solar flare/CME events. J. Geophys. Res. 109, 10104. doi: 10.1029/2004JA010571 .

    Article  Google Scholar 

  26. Fisk, L.A.: 2003, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157. doi: 10.1029/2002JA009284 .

    Article  Google Scholar 

  27. Fisk, L.A., Gloeckler, G.: 2007, Acceleration and composition of solar wind suprathermal tails. Space Sci. Rev. 130, 153 – 160. doi: 10.1007/s11214-007-9180-8 .

    ADS  Article  Google Scholar 

  28. Fisk, L.A., Schwadron, N.A.: 2001, The behavior of the open magnetic field of the Sun. Astrophys. J. 560, 425 – 438. doi: 10.1086/322503 .

    ADS  Article  Google Scholar 

  29. Fisk, L.A., Zhao, L.: 2009, The heliospheric magnetic field and the solar wind during the solar cycle. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symposium 257, 109 – 120. doi: 10.1017/S1743921309029160 .

    Google Scholar 

  30. Fisk, L.A., Zurbuchen, T.H.: 2006, Distribution and properties of open magnetic flux outside of coronal holes. J. Geophys. Res. 111, 9115. doi: 10.1029/2005JA011575 .

    Article  Google Scholar 

  31. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1998, On the slow solar wind. Space Sci. Rev. 86, 51 – 60. doi: 10.1023/A:1005015527146 .

    ADS  Article  Google Scholar 

  32. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1999, Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res. 104, 19765 – 19772. doi: 10.1029/1999JA900256 .

    ADS  Article  Google Scholar 

  33. Geiss, J.: 1982, Processes affecting abundances in the solar wind. Space Sci. Rev. 33, 201 – 217. doi: 10.1007/BF00213254 .

    ADS  Article  Google Scholar 

  34. Geiss, J., Gloeckler, G., von Steiger, R., Balsiger, H., Fisk, L.A., Galvin, A.B., Ipavich, F.M., Livi, S., McKenzie, J.F., Ogilvie, K.W., Wilken, B.: 1995, The southern high-speed stream: Results from the SWICS instrument on Ulysses. Science 268, 1033 – 1036. doi: 10.1126/science.7754380 .

    ADS  Article  Google Scholar 

  35. Getman, K.V., Feigelson, E.D., Broos, P.S., Micela, G., Garmire, G.P.: 2008, X-ray flares in Orion young stars. I. Flare characteristics. Astrophys. J. 688, 418 – 436. doi: 10.1086/592033 .

    ADS  Article  Google Scholar 

  36. Giacalone, J., Kóta, J.: 2006, Acceleration of solar-energetic particles by shocks. Space Sci. Rev. 124, 277 – 288. doi: 10.1007/s11214-006-9110-1 .

    ADS  Article  Google Scholar 

  37. Gizon, L., Birch, A.C.: 2005, Local helioseismology. Living Rev. Solar Phys. 2, 6.

    ADS  Article  Google Scholar 

  38. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145 – 168. doi: 10.1007/s11214-006-9102-1 .

    ADS  Article  Google Scholar 

  39. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91 – L94. doi: 10.1086/318939 .

    ADS  Article  Google Scholar 

  40. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2002, Interplanetary radio emission due to interaction between two coronal mass ejections. Geophys. Res. Lett. 29(8), 080000-1. doi: 10.1029/2001GL013606 .

    Article  Google Scholar 

  41. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Aguilar-Rodriguez, E., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2008, Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560 – 569. doi: 10.1086/524765 .

    ADS  Article  Google Scholar 

  42. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229 – 260. doi: 10.1023/A:1005166902804 .

    ADS  Article  Google Scholar 

  43. Hansteen, V.H., Leer, E.: 1995, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100, 21577 – 21594. doi: 10.1029/95JA02300 .

    ADS  Article  Google Scholar 

  44. Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Howard, R.A., Sheeley, N.R., Vourlidas, A., Webb, D.F., Brown, D.S., Dorrian, G.D.: 2009, Two years of the STEREO heliospheric imagers. Invited review. Solar Phys. 256, 219 – 237. doi: 10.1007/s11207-009-9352-7 .

    ADS  Article  Google Scholar 

  45. Harvey, J.W., Branston, D., Henney, C.J., Keller, C.U., SOLIS and GONG Teams: 2007, Seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. Lett. 659, L177 – L180. doi: 10.1086/518036 .

    ADS  Article  Google Scholar 

  46. Horbury, T.S., Forman, M., Oughton, S.: 2008, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175005. doi: 10.1103/PhysRevLett.101.175005 .

    ADS  Article  Google Scholar 

  47. Howe, R., Komm, R., Hill, F., Ulrich, R., Haber, D.A., Hindman, B.W., Schou, J., Thompson, M.J.: 2006, Large-scale zonal flows near the solar surface. Solar Phys. 235, 1 – 15. doi: 10.1007/s11207-006-0117-2 .

    ADS  Article  Google Scholar 

  48. Jackiewicz, J., Gizon, L., Birch, A.C.: 2008, High-resolution mapping of flows in the solar interior: Fully consistent OLA inversion of helioseismic travel times. Solar Phys. 251, 381 – 415. doi: 10.1007/s11207-008-9158-z .

    ADS  Article  Google Scholar 

  49. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0 .

    ADS  Article  Google Scholar 

  50. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011, Multipoint ICME encounters: Pre-STEREO and STEREO observations. J. Atmos. Solar-Terr. Phys. 73, 1228 – 1241. doi: 10.1016/j.jastp.2010.10.012 .

    ADS  Article  Google Scholar 

  51. Klecker, B., Möbius, E., Popecki, M.A.: 2006, Solar energetic particle charge states: An overview. Space Sci. Rev. 124, 289 – 301. doi: 10.1007/s11214-006-9111-0 .

    ADS  Article  Google Scholar 

  52. Klimchuk, J.A.: 2006, On solving the coronal heating problem. Solar Phys. 234, 41 – 77. doi: 10.1007/s11207-006-0055-z .

    ADS  Article  Google Scholar 

  53. Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Gardner, L.D., Nicolosi, P., Strachan, L., Fineschi, S., Raymond, J.C., Romoli, M., Spadaro, D., Panasyuk, A., Siegmund, O.H.W., Benna, C., Ciaravella, A., Cranmer, S.R., Giordano, S., Karovska, M., Martin, R., Michels, J., Modigliani, A., Naletto, G., Pernechele, C., Poletto, G., Smith, P.L.: 1997, First results from the SOHO ultraviolet coronagraph spectrometer. Solar Phys. 175, 613 – 644. doi: 10.1023/A:1004903206467 .

    ADS  Article  Google Scholar 

  54. Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Cranmer, S.R., Strachan, L., Panasyuk, A.V., Gardner, L.D., Romoli, M., Fineschi, S., Dobrzycka, D., Raymond, J.C., Nicolosi, P., Siegmund, O.H.W., Spadaro, D., Benna, C., Ciaravella, A., Giordano, S., Habbal, S.R., Karovska, M., Li, X., Martin, R., Michels, J.G., Modigliani, A., Naletto, G., O’Neal, R.H., Pernechele, C., Poletto, G., Smith, P.L., Suleiman, R.M.: 1998, UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. Astrophys. J. Lett. 501, L127. doi: 10.1086/311434 .

    ADS  Article  Google Scholar 

  55. Kohl, J.L., Noci, G., Cranmer, S.R., Raymond, J.C.: 2006, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13, 31 – 157. doi: 10.1007/s00159-005-0026-7 .

    ADS  Article  Google Scholar 

  56. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3 – 17. doi: 10.1007/s11207-007-9014-6 .

    ADS  Article  Google Scholar 

  57. Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2008, Solar magnetic tracking. II. The apparent unipolar origin of quiet-Sun flux. Astrophys. J. 674, 520 – 529. doi: 10.1086/524372 .

    ADS  Article  Google Scholar 

  58. Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2010, Solar magnetic tracking. III. Apparent unipolar flux emergence in high-resolution observations. Astrophys. J. 720, 1405 – 1416. doi: 10.1088/0004-637X/720/2/1405 .

    ADS  Article  Google Scholar 

  59. Lee, M.A.: 2007, What determines the composition of SEPs in gradual events? Space Sci. Rev. 130, 221 – 229. doi: 10.1007/s11214-007-9188-0 .

    ADS  Article  Google Scholar 

  60. Li, X., Habbal, S.R., Kohl, J., Noci, G.: 1998, The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona. Astrophys. J. Lett. 501, L133. doi: 10.1086/311428 .

    ADS  Article  Google Scholar 

  61. Lin, R.P.: 2006, Particle acceleration by the Sun: Electrons, hard X-rays/gamma-rays. Space Sci. Rev. 124, 233 – 248. doi: 10.1007/s11214-006-9107-9 .

    ADS  Article  Google Scholar 

  62. Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375 – 2392. doi: 10.1029/1999JA900477 .

    ADS  Article  Google Scholar 

  63. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3 – 32. doi: 10.1023/A:1022428818870 .

    ADS  Article  Google Scholar 

  64. Lites, B., Socas-Navarro, H., Kubo, M., Berger, T., Frank, Z., Shine, R.A., Tarbell, T.D., Title, A.M., Ichimoto, K., Katsukawa, Y., Tsuneta, S., Suematsu, Y., Shimizu, T.: 2007, Hinode observations of horizontal quiet Sun magnetic flux and the “hidden turbulent magnetic flux”. Publ. Astron. Soc. Japan 59, 571.

    Google Scholar 

  65. Liu, R., Liu, C., Park, S.-H., Wang, H.: 2010, Gradual inflation of active-region coronal arcades building up to coronal mass ejections. Astrophys. J. 723, 229 – 240. doi: 10.1088/0004-637X/723/1/229 .

    ADS  Article  Google Scholar 

  66. Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439. doi: 10.1038/20867 .

    ADS  Article  Google Scholar 

  67. Lugaz, N., Manchester, W.B. IV, Gombosi, T.I.: 2005, Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys. J. 634, 651 – 662. doi: 10.1086/491782 .

    ADS  Article  Google Scholar 

  68. Lynch, B.J., Antiochos, S.K., MacNeice, P.J., Zurbuchen, T.H., Fisk, L.A.: 2004, Observable properties of the breakout model for coronal mass ejections. Astrophys. J. 617, 589 – 599. doi: 10.1086/424564 .

    ADS  Article  Google Scholar 

  69. Makarov, V.I., Tlatov, A.G., Sivaraman, K.R.: 2003, Duration of polar activity cycles and their relation to sunspot activity. Solar Phys. 214, 41 – 54.

    ADS  Article  Google Scholar 

  70. Mann, G., Klassen, A., Aurass, H., Classen, H.-T.: 2003, Formation and development of shock waves in the solar corona and the near-Sun interplanetary space. Astron. Astrophys. 400, 329 – 336. doi: 10.1051/0004-6361:20021593 .

    ADS  Article  Google Scholar 

  71. Marino, R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, R., Bavassano, B.: 2008, Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. Lett. 677, L71 – L74. doi: 10.1086/587957 .

    ADS  Article  Google Scholar 

  72. Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.

    ADS  Article  Google Scholar 

  73. Marsch, E., Zhou, G.-Q., He, J.-S., Tu, C.-Y.: 2006, Magnetic structure of the solar transition region as observed in various ultraviolet lines emitted at different temperatures. Astron. Astrophys. 457, 699 – 706. doi: 10.1051/0004-6361:20065665 .

    ADS  Article  Google Scholar 

  74. Marsden, R.G., Müller, D.: 2011, Solar Orbiter definition study report, ESA/SRE(2011)14, http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48985 .

  75. Martínez Pillet, V.: 2007, Instrumental approaches to magnetic and velocity measurements in and out of the ecliptic plane. In: Marsch, E., Tsinganos, K., Marsden, R., Conroy, L. (eds.) Proceedings of the 2nd Solar Orbiter Workshop SP-641, ESA, Noordwijk, 1 – 6.

    Google Scholar 

  76. Mason, G.M.: 2007, 3He-rich solar energetic particle events. Space Sci. Rev. 130, 231 – 242. doi: 10.1007/s11214-007-9156-8 .

    ADS  Article  Google Scholar 

  77. Matteini, L., Landi, S., Hellinger, P., Pantellini, F., Maksimovic, M., Velli, M., Goldstein, B.E., Marsch, E.: 2007, Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophys. Res. Lett. 34, 20105. doi: 10.1029/2007GL030920 .

    ADS  Article  Google Scholar 

  78. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103. doi: 10.1029/2008GL034896 .

    ADS  Article  Google Scholar 

  79. McIntosh, S.W., Davey, A.R., Hassler, D.M.: 2006, Simple magnetic flux balance as an indicator of Ne VIII Doppler velocity partitioning in an equatorial coronal hole. Astrophys. J. Lett. 644, L87 – L91. doi: 10.1086/505488 .

    ADS  Article  Google Scholar 

  80. Mewaldt, R.A.: 2006, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303 – 316. doi: 10.1007/s11214-006-9091-0 .

    ADS  Article  Google Scholar 

  81. Mewaldt, R.A., Cohen, C.M.S., Mason, G.M., Cummings, A.C., Desai, M.I., Leske, R.A., Raines, J., Stone, E.C., Wiedenbeck, M.E., von Rosenvinge, T.T., Zurbuchen, T.H.: 2007, On the differences in composition between solar energetic particles and solar wind. Space Sci. Rev. 130, 207 – 219. doi: 10.1007/s11214-007-9187-1 .

    ADS  Article  Google Scholar 

  82. Neugebauer, M., Goldstein, B.E., McComas, D.J., Suess, S.T., Balogh, A.: 1995, Ulysses observations of microstreams in the solar wind from coronal holes. J. Geophys. Res. 100, 23389 – 23396. doi: 10.1029/95JA02723 .

    ADS  Article  Google Scholar 

  83. Ontiveros, V., Vourlidas, A.: 2009, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267 – 275. doi: 10.1088/0004-637X/693/1/267 .

    ADS  Article  Google Scholar 

  84. Owens, M.J., Crooker, N.U.: 2006, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. 111, 10104. doi: 10.1029/2006JA011641 .

    Article  Google Scholar 

  85. Owens, M.J., Crooker, N.U., Schwadron, N.A., Horbury, T.S., Yashiro, S., Xie, H., St. Cyr, O.C., Gopalswamy, N.: 2008, Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field. Geophys. Res. Lett. 35, 20108. doi: 10.1029/2008GL035813 .

    ADS  Article  Google Scholar 

  86. Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb, D.A., Welsch, B.T.: 2009, A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys. J. 698, 75 – 82. doi: 10.1088/0004-637X/698/1/75 .

    ADS  Article  Google Scholar 

  87. Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: First quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182 – L186. doi: 10.1088/0004-637X/700/2/L182 .

    ADS  Article  Google Scholar 

  88. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 15. doi: 10.1007/s11207-011-9841-3 .

    ADS  Article  Google Scholar 

  89. Pietarila Graham, J., Danilovic, S., Schüssler, M.: 2009, Turbulent magnetic fields in the quiet Sun: Implications of Hinode observations and small-scale dynamo simulations. Astrophys. J. 693, 1728 – 1735. doi: 10.1088/0004-637X/693/2/1728 .

    ADS  Article  Google Scholar 

  90. Porsche, H.: 1977, General aspects of the mission Helios 1 and 2. Introduction to a special issue on initial scientific results of the Helios mission. J. Geophys. 42, 551 – 559.

    Google Scholar 

  91. Reale, F.: 2010, Coronal loops: Observations and modeling of confined plasma. Living Rev. Solar Phys. 7, 5.

    ADS  Article  Google Scholar 

  92. Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, 18804. doi: 10.1029/2004GL020958 .

    ADS  Article  Google Scholar 

  93. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6 .

    ADS  Article  Google Scholar 

  94. Roth, M.: 2007, In: Kneer, F., Puschmann, K.G., Wittmann, A.D. (eds.) Modern Solar Facilities – Advanced Solar Science, Proceedings of a Workshop Held at Göttingen, 27 – 29 September 2006, Universitätsverlag Göttingen, Göttingen. ISBN 9781931968782.

    Google Scholar 

  95. Rouillard, A.P., Lockwood, M., Finch, I.: 2007, Centennial changes in the solar wind speed and in the open solar flux. J. Geophys. Res. 112, 5103. doi: 10.1029/2006JA012130 .

    Article  Google Scholar 

  96. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The Solar Oscillations Investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429

    ADS  Article  Google Scholar 

  97. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2 .

    ADS  Article  Google Scholar 

  98. Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J., Shine, R.A.: 1997, Sustaining the quiet photospheric network: The balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487, 424. doi: 10.1086/304581 .

    ADS  Article  Google Scholar 

  99. Schwadron, N.A., McComas, D.J.: 2003, Solar wind scaling law. Astrophys. J. 599, 1395 – 1403. doi: 10.1086/379541 .

    ADS  Article  Google Scholar 

  100. Schwadron, N.A., McComas, D.J.: 2008, The solar wind power from magnetic flux. Astrophys. J. Lett. 686, L33 – L36. doi: 10.1086/592877 .

    ADS  Article  Google Scholar 

  101. Schwenn, R., Marsch, E.: 1990, Physics of the Inner Heliosphere I. Large-Scale Phenomena, Physics and Chemistry in Space 20, Springer, Berlin.

    Google Scholar 

  102. Schwenn, R., Marsch, E.: 1991, Physics of the Inner Heliosphere II. Particles, Waves and Turbulence, Physics and Chemistry in Space 21, Springer, Berlin.

    Google Scholar 

  103. Sheeley, N.R. Jr.: 1991, Polar faculae – 1906 – 1990. Astrophys. J. 374, 386 – 389. doi: 10.1086/170129 .

    ADS  Article  Google Scholar 

  104. Smith, E.J., Jokipii, J.R., Kóta, J., Lepping, R.P., Szabo, A.: 2000, Evidence of a north-south asymmetry in the heliosphere associated with a southward displacement of the heliospheric current sheet. Astrophys. J. 533, 1084 – 1089. doi: 10.1086/308685 .

    ADS  Article  Google Scholar 

  105. Smith, C.W., Mullan, D.J., Ness, N.F., Skoug, R.M., Steinberg, J.: 2001, Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation. J. Geophys. Res. 106, 18625 – 18634. doi: 10.1029/2001JA000022 .

    ADS  Article  Google Scholar 

  106. Stone, E.C.: 1977, The Voyager missions to the outer system. Space Sci. Rev. 21, 75. doi: 10.1007/BF00200845 .

    ADS  Google Scholar 

  107. Telloni, D., Antonucci, E., Dodero, M.A.: 2007, Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R Sun. Astron. Astrophys. 476, 1341 – 1346. doi: 10.1051/0004-6361:20077660 .

    ADS  Article  Google Scholar 

  108. Thieme, K.M., Marsch, E., Schwenn, R.: 1990, Spatial structures in high-speed streams as signatures of fine structures in coronal holes. Ann. Geophys. 8, 713 – 723.

    ADS  Google Scholar 

  109. Thompson, M.J., Christensen-Dalsgaard, J., Miesch, M.S., Toomre, J.: 2003, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599 – 643. doi: 10.1146/annurev.astro.41.011802.094848 .

    ADS  Article  Google Scholar 

  110. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: 2008a, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 – 1381. doi: 10.1086/592226 .

    ADS  Article  Google Scholar 

  111. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., et al.: 2008b, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167 – 196. doi: 10.1007/s11207-008-9174-z

    ADS  Article  Google Scholar 

  112. Tu, C.-Y., Marsch, E.: 1990, Evidence for a ‘background’ spectrum of solar wind turbulence in the inner heliosphere. J. Geophys. Res. 95, 4337 – 4341. doi: 10.1029/JA095iA04p04337 .

    ADS  Article  Google Scholar 

  113. Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005, Solar wind origin in coronal funnels. Science 308, 519 – 523. doi: 10.1126/science.1109447 .

    ADS  Article  Google Scholar 

  114. Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2006, A comparative study of ion characteristics in the large gradual solar energetic particle events of 2002 April 21 and 2002 August 24. Astrophys. J. Suppl. Ser. 164, 536 – 551. doi: 10.1086/503203 .

    ADS  Article  Google Scholar 

  115. Van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: 1975, The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41, 189 – 223. doi: 10.1007/BF00152967 .

    ADS  Article  Google Scholar 

  116. Vögler, A., Schüssler, M.: 2007, A solar surface dynamo. Astron. Astrophys. 465, L43 – L46. doi: 10.1051/0004-6361:20077253 .

    Article  Google Scholar 

  117. von Steiger, R., Geiss, J., Gloeckler, G.: 1997, Composition of the solar wind. In: Jokipii, J.R., Sonett, C.P., Giampapa, M.S. (eds.) Cosmic Winds and the Heliosphere, 581.

    Google Scholar 

  118. Vourlidas, A., Wu, S.T., Wang, A.H., Subramanian, P., Howard, R.A.: 2003, Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images. Astrophys. J. 598, 1392 – 1402. doi: 10.1086/379098 .

    ADS  Article  Google Scholar 

  119. Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215 – 235. doi: 10.1007/s11207-008-9241-5 .

    ADS  Article  Google Scholar 

  120. Wang, Y.-M., Robbrecht, E.: 2011, Asymmetric sunspot activity and the southward displacement of the heliospheric current sheet. Astrophys. J. 736, 136. doi: 10.1088/0004-637X/736/2/136 .

    ADS  Article  Google Scholar 

  121. Wang, Y.-M., Sheeley, N.R. Jr.: 2006, Sources of the solar wind at Ulysses during 1990 – 2006. Astrophys. J. 653, 708 – 718. doi: 10.1086/508929 .

    ADS  Article  Google Scholar 

  122. Wang, Y.-M., Lean, J., Sheeley, N.R.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505 – 508. doi: 10.1029/1999GL010744 .

    ADS  Article  Google Scholar 

  123. Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Evolution of the Sun’s polar fields during sunspot cycle 21 – Poleward surges and long-term behavior. Astrophys. J. 347, 529 – 539. doi: 10.1086/168143 .

    ADS  Article  Google Scholar 

  124. Wang, Y.-M., Biersteker, J.B., Sheeley, N.R. Jr., Koutchmy, S., Mouette, J., Druckmüller, M.: 2007, The solar eclipse of 2006 and the origin of raylike features in the white-light corona. Astrophys. J. 660, 882 – 892. doi: 10.1086/512480 .

    ADS  Article  Google Scholar 

  125. Wenzel, K.P., Marsden, R.G., Page, D.E., Smith, E.J.: 1992, The Ulysses mission. Astron. Astrophys. Suppl. Ser. 92, 207.

    ADS  Google Scholar 

  126. Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100 – 1109. doi: 10.1086/506903 .

    ADS  Article  Google Scholar 

  127. Zirin, H.: 1987, Weak solar fields and their connection to the solar cycle. Solar Phys. 110, 101 – 107. doi: 10.1007/BF00148205 .

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Contributions to this paper were provided by the PIs and Co-PIs, the ESA Solar Orbiter Project Team, the NASA Solar Orbiter Collaboration Project Team, E. Marsch (MPS Lindau), M. Velli (JPL/U. Firenze), C. DeForest (SwRI Boulder), D. Hassler (SwRI Boulder) and W. Lewis (SwRI San Antonio). The authors would like to thank the referee, guest editor and journal editors for comments and suggestions, which helped to improve the quality of this work.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Müller.

Additional information

Observations and Modelling of the Inner Heliosphere

Guest Editors: Mario M. Bisi, Richard A. Harrison, and Noé Lugaz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Müller, D., Marsden, R.G., St. Cyr, O.C. et al. Solar Orbiter . Sol Phys 285, 25–70 (2013). https://doi.org/10.1007/s11207-012-0085-7

Download citation

Keywords

  • Sun
  • Heliosphere
  • Corona
  • Dynamics
  • Magnetic fields