Skip to main content

Variation of the Schwabe Cycle Length During the Grand Solar Minimum in the 4th Century BC Deduced from Radiocarbon Content in Tree Rings

Abstract

Solar activity alternates between active and quiet phases with an average period of 11 years, and this is known as the Schwabe cycle. Additionally, solar activity occasionally falls into a prolonged quiet phase (grand solar minimum), as represented by the Maunder Minimum in the 17th century, when sunspots were almost absent for 70 years and the length of the Schwabe cycle increased to 14 years. To examine the consistency of the cycle length characteristics during the grand solar minima, the carbon-14 contents in single-year tree rings were measured using an accelerator mass spectrometer as an index of the solar variability during the grand solar minimum of the 4th century BC. The signal of the Schwabe cycle was detected with a statistical confidence level of higher than 95 % by wavelet analysis. This is the oldest evidence for the Schwabe cycle at the present time, and the cycle length is considered to have increased to approximately 16 years during the grand solar minimum of the 4th century BC. This result confirms the association between the increase of the Schwabe cycle length and the weakening of solar activity, and indicates the possible prolonged absence of sunspots in the 4th century BC as during the Maunder Minimum. Theoretical implications from solar dynamo theory are discussed in order to identify the trigger of prolonged sunspot absence. A possible association between the long-term solar variation around the 4th century BC and terrestrial cooling in this period is also discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Babcock, H.D.: 1959, Astrophys. J. 130, 364.

    ADS  Article  Google Scholar 

  2. Babcock, H.W.: 1961, Astrophys. J. 133, 572.

    ADS  Article  Google Scholar 

  3. Barber, K.E., Langdon, P.G.: 2007, Quat. Sci. Rev. 26, 3318.

    ADS  Article  Google Scholar 

  4. Beer, J., Tobias, S., Weiss, N.: 1998, Solar Phys. 181, 237.

    ADS  Article  Google Scholar 

  5. Berggren, A.M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., Johnsen, S.J., Abreu, J., Vinther, B.M.: 2009, Geophys. Res. Lett. 36(11), L11801.

    ADS  Article  Google Scholar 

  6. Berner, K.S., Koc, N., Divine, D., Godtliebsen, F., Moros, M.: 2008, Paleoceanography 23, 2.

    Article  Google Scholar 

  7. Bronk Ramsey, C.: 2008, Quat. Sci. Rev. 27(1 – 2), 42.

    ADS  Article  Google Scholar 

  8. Bronk Ramsey, C., van der Plicht, J., Weninger, B.: 2001, Radiocarbon 43, 381.

    Google Scholar 

  9. Charbonneau, P., Dikpati, M.: 2000, Astrophys. J. 543, 1027.

    ADS  Article  Google Scholar 

  10. Choudhuri, A.R., Karak, B.B.: 2009, Res. Astron. Astrophys. 9, 953.

    ADS  Article  Google Scholar 

  11. Desprat, S., Goni, M.F.S., Loutre, M.F.: 2003, Earth Planet. Sci. Lett. 213, 63.

    ADS  Article  Google Scholar 

  12. Dikpati, M., Charbonneau, P.: 1999, Astrophys. J. 518, 508.

    ADS  Article  Google Scholar 

  13. Eddy, J.A.: 1976, Science 192, 1189.

    ADS  Article  Google Scholar 

  14. Geel, B.V., Buurman, J., Waterbolk, H.T.: 1996, J. Quat. Sci. 11(6), 451.

    Article  Google Scholar 

  15. Gil Garcia, M.J., Ruiz Zapata, M.B., Santisteban, J.I., Mediavilla, R., Lopez-Pamo, E., Dabrio, C.J.: 2007, Veg. Hist. Archaeobot. 16, 241.

    Article  Google Scholar 

  16. Godwin, H.: 1962, Nature 195, 984.

    ADS  Article  Google Scholar 

  17. Goslar, T.: 2003, PAGES News (Past Global Changes) 11(2 – 3), 12.

    Google Scholar 

  18. Hale, G.E., Nicholson, S.B.: 1925, Astrophys. J. 62, 270.

    ADS  Article  Google Scholar 

  19. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, Astrophys. J. 49, 153.

    ADS  Article  Google Scholar 

  20. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357.

    ADS  Article  Google Scholar 

  21. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Astrophys. J. 589, 665.

    ADS  Article  Google Scholar 

  22. Hotta, H., Yokoyama, T.: 2010, Astrophys. J. 709, 1009.

    ADS  Article  Google Scholar 

  23. Hoyt, D.V., Schatten, K.H.: 1998, Solar Phys. 179, 189.

    ADS  Article  Google Scholar 

  24. Karak, B.B.: 2010, Astrophys. J. 724, 1021.

    ADS  Article  Google Scholar 

  25. Kota, J., Jokipii, J.R.: 1983, Astrophys. J. 265, 573.

    ADS  Article  Google Scholar 

  26. Leighton, R.B.: 1964, Astrophys. J. 140, 1547.

    ADS  MATH  Article  Google Scholar 

  27. Masarik, J., Beer, J.: 1999, J. Geophys. Res. 104, 12099.

    ADS  Article  Google Scholar 

  28. Matsuzaki, H., et al.: 2007, Nucl. Instrum. Methods Phys. Res. Sect. B 259(1), 36.

    ADS  Article  Google Scholar 

  29. Maunder, E.W.: 1890, Mon. Not. Roy. Astron. Soc. 50, 251.

    Google Scholar 

  30. Miyahara, H., Yokoyama, Y., Masuda, K.: 2008, Earth Planet. Sci. Lett. 272, 290.

    ADS  Article  Google Scholar 

  31. Miyahara, H., Masuda, K., Muraki, Y., Furuzawa, H., Menjo, H., Nakamura, T.: 2004, Solar Phys. 224, 317.

    ADS  Article  Google Scholar 

  32. Miyahara, H., Kitazawa, K., Nagaya, K., Yokoyama, Y., Matsuzaki, H., Masuda, K., Nakamura, T., Muraki, Y.: 2010, J. Cosmol. 8, 1970.

    ADS  Google Scholar 

  33. Nagaoka, S., Kawano, K., Ito, Y., Okuno, M., Nakao, T., et al.: 1998, In: Nakamura, T. (ed.) Summaries of Researches Using AMS at Nagoya University IX, The Nagoya University Center for Chronological Research, Nagoya, 260.

    Google Scholar 

  34. Nakamura, T., Niu, E., Oda, H., Ikeda, A., Minami, M., et al.: 2000, Nucl. Instrum. Methods Phys. Res. Sect. B 172, 52.

    ADS  Article  Google Scholar 

  35. Pinnegar, C.R., Mansinha, L.: 2004, Signal Process. 84, 1167.

    MATH  Article  Google Scholar 

  36. Plunkett, G., Swindles, G.T.: 2008, Quat. Sci. Rev. 27, 175.

    ADS  Article  Google Scholar 

  37. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., et al.: 2004, Radiocarbon 46, 1029.

    Google Scholar 

  38. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., et al.: 2009, Radiocarbon 51, 1111.

    Google Scholar 

  39. Richards, M.T., Rogers, M.L., Richards, D.St.P.: 2009, Publ. Astron. Soc. Pac. 121, 797.

    ADS  Article  Google Scholar 

  40. Schwabe, S.H.: 1843, Astron. Nachr. 20, 283.

    ADS  Article  Google Scholar 

  41. Siegenthaler, U., Beer, J.: 1988, Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic, Boston, 315.

    Google Scholar 

  42. Solanki, S.K., Krivova, N.A., Schüssler, M., Fligge, M.: 2002, Astron. Astrophys. 396, 1029.

    ADS  Article  Google Scholar 

  43. Stockwell, R.G., Mansinha, L., Lowe, R.P.: 1996, IEEE Trans. Signal Process. 44(4), 998.

    ADS  Article  Google Scholar 

  44. Stuiver, M.: 1991, Quat. Res. 35, 1.

    Article  Google Scholar 

  45. Stuiver, M., Braziunas, T.F.: 1988, Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic, Boston, 245.

    Google Scholar 

  46. Stuiver, M., Braziunas, T.F.: 1989, Nature 338, 405.

    ADS  Article  Google Scholar 

  47. Stuiver, M., Polach, H.A.: 1977, Radiocarbon 19, 355.

    Google Scholar 

  48. Stuiver, M., Quay, P.D.: 1980, Science 207, 11.

    ADS  Article  Google Scholar 

  49. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., et al.: 1998, Radiocarbon 40, 1041.

    Google Scholar 

  50. Swindles, G.T., Plunkett, G., Roe, H.M.: 2007, J. Quat. Sci. 22(7), 667.

    Article  Google Scholar 

  51. Usoskin, I.G., Sokoloff, D., Moss, D.: 2009, Solar Phys. 254, 345.

    ADS  Article  Google Scholar 

  52. Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Astron. Astrophys. 471, 301.

    ADS  Article  Google Scholar 

  53. Watari, S.: 2008, Space Weather 6, 12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the staff of the Center for Chronological Research, Nagoya University and the staff of the Micro Analysis Laboratory Tandem Accelerator, University of Tokyo. This work was partly supported by Grants-in-Aid for Scientific Research (B:22340144) by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The authors thank the anonymous referee for many useful comments and discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Nagaya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nagaya, K., Kitazawa, K., Miyake, F. et al. Variation of the Schwabe Cycle Length During the Grand Solar Minimum in the 4th Century BC Deduced from Radiocarbon Content in Tree Rings. Sol Phys 280, 223–236 (2012). https://doi.org/10.1007/s11207-012-0045-2

Download citation

Keywords

  • Cosmic rays
  • Galactic
  • Solar cycle
  • Observations