Solar Physics

, Volume 279, Issue 2, pp 383–409 | Cite as

A Fast Model for the Reconstruction of Spectral Solar Irradiance in the Near- and Mid-Ultraviolet

  • C. Bolduc
  • P. Charbonneau
  • V. Dumoulin
  • M. S. Bourqui
  • A. D. Crouch
Article

Abstract

We present a model for the reconstruction of spectral solar irradiance between 200 and 400 nm. This model is an extension of the total solar irradiance (TSI) model of Crouch et al. (Astrophys. J.677, 723, 2008) which is based on a data-driven Monte Carlo simulation of sunspot emergence, fragmentation, and erosion. The resulting time-evolving daily area distribution of magnetic structures of all sizes is used as input to a four-component irradiance model including contributions from the quiet Sun, sunspots, faculae, and network. In extending the model to spectral irradiance in the near- and mid-ultraviolet, the quiet Sun and sunspot emissivities are calculated from synthetic spectra at Teff=5750 K and 5250 K, respectively. Facular emissivities are calculated using a simple synthesis procedure proposed by Solanki and Unruh (Astron. Astrophys.329, 747, 1998). The resulting time series of ultraviolet flux is calibrated against the data from the SOLSTICE instrument on the Upper Atmospheric Research Satellite (UARS). Using a genetic algorithm, we invert quiet Sun corrections, profile of facular temperature variations with height, and network model parameters which yield the best fit to these data. The resulting best-fit time series reproduces quite well the solar-cycle timescale variations of UARS ultraviolet observations, as well as the short-timescale fluctuations about the 81 day running mean. We synthesize full spectra between 200 and 400 nm, and validate these against the spectra obtained by the ATLAS-1 and ATLAS-3 missions, finding good agreement, to better than 3 % at most wavelengths. We also compare the UV variability predicted by our reconstructions in the descending phase of sunspot cycle 23 to SORCE/SIM data as well as to other reconstructions. Finally, we use the model to reconstruct the time series of spectral irradiance starting in 1874, and investigate temporal correlations between pairs of wavelengths in the bands of interest for stratospheric chemistry and dynamics.

Keywords

Solar irradiance Spectrum, ultraviolet 

References

  1. Bogdan, T.J., Gilman, P.A., Lerche, I., Howard, R.: 1988, Distribution of sunspot umbral areas – 1917 – 1982. Astrophys. J. 327, 451. ADSCrossRefGoogle Scholar
  2. Brandt, P.N., Stix, M., Weinhardt, H.: 1994, Modeling solar irradiance variations with an area dependant photometric sunspot index. Solar Phys. 152, 119. ADSCrossRefGoogle Scholar
  3. Chapman, G.A.: 1980, Variations in the solar constant due to solar active regions. Astrophys. J. Lett. 242, L45. ADSCrossRefGoogle Scholar
  4. Chapman, G.A., Cookson, A.M., Dobias, J.J.: 1996, Variations in total solar irradiance during cycle 22. J. Geophys. Res. 101, 13541. ADSCrossRefGoogle Scholar
  5. Charbonneau, P.: 2002, An introduction to genetic algorithms for numerical optimization. NCAR Technical Note 450+IA, 311. Google Scholar
  6. Charbonneau, P., Knapp, B.: 1995, A user’s guide to PIKAIA 1.0. NCAR Technical Note 418+IA, 311. Google Scholar
  7. Crouch, A.D., Charbonneau, P., Thibault, K.: 2007, Supergranulation as an emergent length scale. Astrophys. J. 662, 715. ADSCrossRefGoogle Scholar
  8. Crouch, A.D., Charbonneau, P., Beaubien, G., Paquin-Ricard, D.: 2008, A model for the total solar irradiance based on active region decay. Astrophys. J. 677, 723. ADSCrossRefGoogle Scholar
  9. Cubasch, U., Voss, R.: 2000, The influence of total solar irradiance on climate. Space Sci. Rev. 94, 185. ADSCrossRefGoogle Scholar
  10. DeLand, M.T., Cebula, R.P.: 2008, Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res. 113, A11103. ADSCrossRefGoogle Scholar
  11. DeLand, M.T., Floyd, L.E., Rottman, G.J., Pap, J.M.: 2004, Status of UARS solar UV irradiance data. Adv. Space Res. 34, 243. ADSCrossRefGoogle Scholar
  12. Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319. ADSCrossRefGoogle Scholar
  13. Fontenla, J.M., White, O.R., Fox, P.A., Avrett, E.H., Kurucz, R.L.: 1999, Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J. 518, 480. ADSCrossRefGoogle Scholar
  14. Fontenla, J.M., Curdt, W., Haberreiter, M., Harder, J., Tian, H.: 2009, Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482. ADSCrossRefGoogle Scholar
  15. Forster, P., Ramaswamy, V., Artaxo, P., Bernsten, T., Betts, R., Fahey, D.W., et al.: 2007, Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.I. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 188 – 193. Google Scholar
  16. Fröhlich, C., Lean, J.: 2004, Solar radiative output and its variability: Evidence and mechanisms. Astron. Astrophys. Rev. 12, 273. ADSCrossRefGoogle Scholar
  17. Fröhlich, C., Pap, J.M., Hudson, H.: 1994, Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time. Solar Phys. 152, 111. ADSCrossRefGoogle Scholar
  18. Ghizaru, M., Charbonneau, P., Smolarkiewicz, P.K.: 2010, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, L133. ADSCrossRefGoogle Scholar
  19. Haberreiter, M., Krivova, N.A., Schmutz, W., Wenzler, T.: 2005, Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res. 35, 365. ADSCrossRefGoogle Scholar
  20. Haigh, J.D.: 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370, 544. ADSCrossRefGoogle Scholar
  21. Haigh, J.D.: 2001, Climate variability and the influence of the Sun. Science 294, 2109. CrossRefGoogle Scholar
  22. Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696. ADSCrossRefGoogle Scholar
  23. Harder, J.W., Fontenla, J.M., Pilewski, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, L07801. CrossRefGoogle Scholar
  24. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewski, P.: 2010, The SORCE SIM solar spectrum: Comparison with recent observations. Solar Phys. 263, 3. ADSCrossRefGoogle Scholar
  25. Hudson, H.S., Silva, S., Woodard, M., Willson, R.C.: 1982, The effect of sunspots on solar irradiance. Solar Phys. 76, 211. ADSGoogle Scholar
  26. Hufbauer, K.: 1991, Exploring the Sun: Solar Science since Galileo, The Johns Hopkins University Press, Baltimore, 135 – 144. Google Scholar
  27. Kopp, G., Lawrence, G., Rottman, G.: 2005, The Total Solar Irradiance Monitor (TIM): Science results. Solar Phys. 230, 129. ADSCrossRefGoogle Scholar
  28. Krivova, N.A., Solanki, S.K., Wenzler, T., Podlipnik, B.: 2009, Reconstruction of solar UV irradiance since 1974. J. Geophys. Res. 114, 1. CrossRefGoogle Scholar
  29. Kyle, H.L., Hoyt, D.V., Hickey, J.R.: 1994, A review of the Nimbus-7 ERB solar dataset. Solar Phys. 152, 9. ADSCrossRefGoogle Scholar
  30. Lean, J.: 1991, Variations in the Sun’s radiative output. Rev. Geophys. 29, 505. ADSCrossRefGoogle Scholar
  31. Lean, J.: 2000, Short-term, direct indices of solar variability. Space Sci. Rev. 94, 39. ADSCrossRefGoogle Scholar
  32. Lean, J., Rind, D.: 2002, Earth’s response to a variable Sun. Science 292, 234. CrossRefGoogle Scholar
  33. Lean, J., Cook, J., Marquette, W., Johannesson, A.: 1998, Magnetic sources of the solar irradiance cycle. Astrophys. J. 492, 390. ADSCrossRefGoogle Scholar
  34. Muncaster, R., Bourqui, M.S., Chabrillat, S., Viscardy, S., Melo, S., Charbonneau, P.: 2011, Modelling the effects of (short-term) solar variability on stratospheric chemistry. Atmos. Chem. Phys. Discuss. 11, 32455. ADSCrossRefGoogle Scholar
  35. Oster, L.: 1983, Solar irradiance variations. II. – Analysis of the extreme ultraviolet measurements onboard the Atmosphere Explorer E satellite. J. Geophys. Res., 9037. Google Scholar
  36. Rind, D.: 2002, The Sun’s role in climate variations. Science 296, 673. ADSCrossRefGoogle Scholar
  37. Rottman, G.J., Woods, T.N., Sparn, T.P.: 1993, Solar-Stellar Irradiance Comparison Experiment 1: I. Instrument design and calibration. J. Geophys. Res. 98, 10667. ADSCrossRefGoogle Scholar
  38. Rottman, G.J., Woods, T.N., Snow, M., de Toma, G.: 2001, The solar cycle variation in ultraviolet irradiance. Adv. Space Res. 27, 1927. ADSCrossRefGoogle Scholar
  39. Rottman, G.J., Harder, J.W., Fontenla, J., Woods, T., White, O.R., Lawrence, G.M.: 2005, The Spectral Irradiance Monitor (SIM): Early observations. Solar Phys. 230, 205. ADSCrossRefGoogle Scholar
  40. Semeniuk, K., Fomichev, V.I., McConnell, J.C., Fu, C., Melo, S.M.L., Usoskin, I.G.: 2011, Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 11, 5045. ADSCrossRefGoogle Scholar
  41. Solanki, S.K., Krivova, N.A., Wenzler, T.: 2005, Irradiance models. Adv. Space Res. 35, 376. ADSCrossRefGoogle Scholar
  42. Solanki, S.K., Unruh, Y.C.: 1998, A model of the wavelength dependence of solar irradiance variations. Astron. Astrophys. 329, 747. ADSGoogle Scholar
  43. Tapping, K., Boteler, D., Charbonneau, P., Crouch, A., Manson, A., Paquette, H.: 2007, Solar magnetic activity and total solar irradiance since the Maunder minimum. Solar Phys. 246, 309. ADSCrossRefGoogle Scholar
  44. Thibault, K., Charbonneau, P., Crouch, A.D.: 2012, The build-up of a scale-free photospheric magnetic network. Astrophys. J. in preparation. Google Scholar
  45. Thuillier, G., Joukoff, A., Schmutz, W.: 2003, The PICARD mission. In: Wilson, A. (ed.) International Solar Cycle Studies (ISCS) Symposium, ASP Conf. Ser. 535, 251. Google Scholar
  46. Thuillier, G., Hersé, M., Simon, P.C., Labs, D., Mandel, H., Gillotay, D.: 1997, Observation of the UV solar spectral irradiance between 200 and 350 nm during the ATLAS 1 mission by the SOLSPEC spectrometer. Solar Phys. 171, 283. ADSCrossRefGoogle Scholar
  47. Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Phys. 214, 1. ADSCrossRefGoogle Scholar
  48. Thuillier, G., DeLand, M., Shapiro, A., Schmutz, W., Bolsée, D., Melo, S.: 2012, The solar spectral irradiance as a function of the Mg ii index for atmosphere and climate modelling. Solar Phys. 277, 245. ADSCrossRefGoogle Scholar
  49. Unruh, Y.C., Krivova, N.A., Solanki, S.K., Harder, J.W., Kopp, G.: 2008, Spectral irradiance variations: Comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys. 486, 311. ADSCrossRefGoogle Scholar
  50. Willson, R.C., Hudson, H.S.: 1988, Solar luminosity variations in solar cycle 21. Nature 332, 810. ADSCrossRefGoogle Scholar
  51. Willson, R.C., Hudson, H.S.: 1991, The Sun’s luminosity over a complete solar cycle. Nature 351, 42. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. Bolduc
    • 1
  • P. Charbonneau
    • 1
  • V. Dumoulin
    • 1
  • M. S. Bourqui
    • 2
  • A. D. Crouch
    • 3
  1. 1.Département de PhysiqueUniversité de MontréalMontréalCanada
  2. 2.Department of Atmospheric and Oceanic SciencesMcGill UniversityMontrealCanada
  3. 3.Colorado Research Associates DivisionNorthWest Research AssociatesBoulderUSA

Personalised recommendations