Solar Physics

, Volume 276, Issue 1–2, pp 351–361 | Cite as

Distribution of the Daily Sunspot Number Variation for the Last 14 Solar Cycles

Article

Abstract

The difference between consecutive daily Sunspot Numbers was analysed. Its distribution was approximated on a large time scale with an exponential law. In order to verify this approximation a Maximum Entropy distribution was generated by a modified version of the Simulated Annealing algorithm. The exponential approximation holds for the generated distribution too. The exponential law is characteristic for time scales covering whole cycles, and it is mostly a characteristic of the Sunspot Number fluctuations and not of its average variation.

Keywords

Solar cycle, models Sunspots, statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, L.A., Letellier, C., Maquet, J.: 2008, Forecasting the time series of sunspot numbers. Solar Phys. 249, 103 – 120. ADSCrossRefGoogle Scholar
  2. Černý, V.: 1985, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41 – 51. MathSciNetMATHCrossRefGoogle Scholar
  3. Cranmer, K.S.: 2001, Kernel estimation in high-energy physics. Comput. Phys. Commun. 136, 198 – 207. ADSMATHCrossRefGoogle Scholar
  4. Greenkorn, R.A.: 2009, Analysis of sunspot activity cycles. Solar Phys. 255, 301 – 323. ADSCrossRefGoogle Scholar
  5. Ingber, L.: 1993, Simulated annealing: practice versus theory. Math. Comput. Model. 18, 29 – 57. MathSciNetMATHCrossRefGoogle Scholar
  6. Jaynes, E.T.: 1957a, Information theory and statistical mechanics. Phys. Rev. 106, 620 – 630. MathSciNetADSCrossRefGoogle Scholar
  7. Jaynes, E.T.: 1957b, Information theory and statistical mechanics II. Phys. Rev. 108, 171 – 190. MathSciNetADSCrossRefGoogle Scholar
  8. Jaynes, E.T.: 1963, Information theory and statistical mechanics. In: Ford, K. (ed.) Statistical Phys., Benjamin, New York, 181 – 218. Google Scholar
  9. Kanazir, M., Wheatland, M.S.: 2010, Time-dependent stochastic modeling of solar active region energy. Solar Phys. 266, 301 – 321. ADSCrossRefGoogle Scholar
  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: 1983, Optimization by simulated annealing. Science 220, 671 – 680. MathSciNetADSMATHCrossRefGoogle Scholar
  11. Kotz, S., Kozubowski, T.J., Podgorski, K.: 2001, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering and Finance, Birkhäuser, Basel. MATHGoogle Scholar
  12. Lepreti, F., Fanello, P.C., Zaccaro, F., Carbone, V.: 2000, Persistence of solar activity on small scales: Hurst analysis of time series coming from Hα flares. Solar Phys. 197, 149 – 156. ADSCrossRefGoogle Scholar
  13. Letellier, C., Aguirre, L.A., Maquet, J., Gilmore, R.: 2006, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 449, 379 – 387. ADSCrossRefGoogle Scholar
  14. Noble, P.L., Wheatland, M.S.: 2011, Modeling the sunspot number distribution with a Fokker–Planck equation. Astrophys. J. 732, 5. ADSCrossRefGoogle Scholar
  15. Nordemann, D.J.R.: 1992, Sunspot number time series – exponential fitting and solar behavior. Solar Phys. 141, 199 – 202. ADSCrossRefGoogle Scholar
  16. Parzen, E.: 1962, On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065 – 1076. MathSciNetMATHCrossRefGoogle Scholar
  17. Pontieri, A., Lepreti, F., Sorriso-Valvo, L., Vecchio, A., Carbone, V.: 2003, A simple model for the solar cycle. Solar Phys. 213, 195 – 201. ADSCrossRefGoogle Scholar
  18. Proctor, M.R.E., Gilbert, A.D. (eds.): 1994, Lectures on Solar and Planetary Dynamos, Cambridge University Press, Cambridge. MATHGoogle Scholar
  19. Rosenblatt, M.: 1956, Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832 – 837. MathSciNetMATHCrossRefGoogle Scholar
  20. Salakhutdinova, I.I.: 1998, A fractal structure of the time series of global indices of solar activity. Solar Phys. 181, 221 – 235. ADSCrossRefGoogle Scholar
  21. Salakhutdinova, I.I.: 1999, Identifying the quasi-regular and stochastic components of solar cyclicity and their properties. Solar Phys. 188, 377 – 396. ADSCrossRefGoogle Scholar
  22. SIDC-team: 1848 – 2010, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number, Online catalogue of the sunspot index: http://www.sidc.be/sunspot-data/.
  23. Uffink, J.: 1995, Can the Maximum Entropy Principle be explained as a consistency requirement? Stud. Hist. Philos. Mod. Phys. 26B, 223 – 262. MathSciNetCrossRefGoogle Scholar
  24. Vecchio, A., Primavera, L., Carbone, V., Sorriso-Valvo, L.: 2005, Periodic behavior and stochastic fluctuations of solar activity: proper orthogonal decomposition analysis. Solar Phys. 229, 359 – 372. ADSCrossRefGoogle Scholar
  25. Wu, W.B., Mielniczuk, J.: 2002, Kernel density estimation for linear processes. Ann. Stat. 30, 1441 – 1459. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Applied PhysicsTransilvania UniversityBrasovRomania

Personalised recommendations