Skip to main content
Log in

A Stochastic Prediction Model for the Sunspot Cycles

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A stochastic prediction model for the sunspot cycle is proposed. The prediction model is based on a modified binary mixture of Laplace distribution functions and a moving-average model over the estimated model parameters. A six-parameter modified binary mixture of Laplace distribution functions is used for the modeling of the shape of a generic sunspot cycle. The model parameters are estimated for 23 sunspot cycles independently, and the primary prediction-model parameters are derived from these estimated model parameters using a moving-average stochastic model. A correction factor (hump factor) is introduced to make an initial prediction. The hump factor is computed for a given sunspot cycle as the ratio of the model estimated after the completion of a sunspot cycle (post-facto model) and the prediction of the moving-average model. The hump factors can be applied one at a time over the moving-average prediction model to get a final prediction of a sunspot cycle. The present model is used to predict the characteristics of Sunspot Cycle 24. The methodology is validated using the previous Sunspot Cycles 21, 22, and 23, which shows the adequacy and the applicability of the prediction model. The statistics of the variations of sunspot numbers at high solar activity are used to provide the lower and upper bound for the predictions using the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Box, G.E.P., Jenkins, G.M.: 1976, Time Series Analysis: Forecasting and Control, Holden-Day, Oakland.

    MATH  Google Scholar 

  • Elling, W., Schwentek, H.: 1992, Solar Phys. 137, 155.

    Article  ADS  Google Scholar 

  • Farmer, J.D., Sidorowich, J.J.: 1987, Phys. Rev. Lett. 59, 845.

    Article  MathSciNet  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, Solar Phys. 151, 177.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, J. Geophys. Res. 104(A10), 375.

    Article  Google Scholar 

  • McNish, A.G., Lincoln, J.V.: 1949, Eos Trans. AGU 30, 673.

    Google Scholar 

  • Nordeman, D.J.R., Trivedi, N.B.: 1992, Solar Phys. 142(2), 411.

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2008, Solar Phys. 252, 209.

    Article  ADS  Google Scholar 

  • Sabarinath, A., Anilkumar, A.K.: 2008, Solar Phys. 250, 183.

    Article  ADS  Google Scholar 

  • Sorenson, H.W.: 1980, Parameter Estimation – Principles and Problems, Marcel Dekker, New York.

    MATH  Google Scholar 

  • Stewart, J.Q., Panofsky, H.A.A.: 1938, Astrophys. J. 88, 385.

    Article  ADS  MATH  Google Scholar 

  • Storini, M., Pase, S.: 1995, In: Watanabe, T. (ed.) STEP GBRSC News (Special Issue), Proc. of the Second SOLTIP Symp., Nakaminato, Japan 5, 255

    Google Scholar 

  • Storini, M., Giangrave, S., Diego, P., Laurenza, M.: 2008, In: Caballero, R., D’Olivo, J.C., Medina-Tanco, G., Nellen, L., Sánchez, F.A., Valdés-Galicia, J.F. (eds.) Proc. 30th Int. Cosmic Ray Conf. 1(SH), Universidad Nacional Autónoma de México, Mexico, 533.

    Google Scholar 

  • Volobuev, D.M.: 2009, Solar Phys. 258, 319.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Anilkumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabarinath, A., Anilkumar, A.K. A Stochastic Prediction Model for the Sunspot Cycles. Sol Phys 273, 255–265 (2011). https://doi.org/10.1007/s11207-011-9861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9861-z

Keywords

Navigation