Skip to main content
Log in

Radiative Cooling in MHD Models of the Quiet Sun Convection Zone and Corona

  • SOLAR FLARE MAGNETIC FIELDS AND PLASMAS
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a series of numerical simulations of the quiet-Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radiative transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Sun’s atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbett, W.P.: 2007, The magnetic connection between the convection zone and corona in the quiet Sun. Astrophys. J. 665, 1469 – 1488. doi: 10.1086/519788 .

    Article  ADS  Google Scholar 

  • Abbett, W.P., Fisher, G.H.: 2010, Improving large-scale convection-zone-to-corona models. Mem. Soc. Astron. Ital. 81, 721 – 728.

    ADS  Google Scholar 

  • Abbett, W.P., Hawley, S.L.: 1999, Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906 – 919. doi: 10.1086/307576 .

    Article  ADS  Google Scholar 

  • Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573 – 586. doi: 10.1086/431751 .

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, 56 – 59. doi: 10.1051/0004-6361/200913502 .

    Article  ADS  Google Scholar 

  • Balbás, J., Tadmor, E.: 2006, Nonoscillatory central schemes for one- and two-dimensional magnetohydrodynamics equations. II: High-order semidiscrete schemes. SIAM J. Sci. Comput. 28(2), 533 – 560. doi: 10.1137/040610246 . http://link.aip.org/link/?SCE/28/533/1 .

    Article  MathSciNet  MATH  Google Scholar 

  • Bercik, D.J.: 2002, A numerical investigation of the interaction between convection and magnetic field in a solar surface layer. PhD thesis, Michigan State University.

  • Carlsson, M., Stein, R.F.: 1992, Non-LTE radiating acoustic shocks and Ca ii K2V bright points. Astrophys. J. Lett. 397, L59 – L63. doi: 10.1086/186544 .

    Article  ADS  Google Scholar 

  • Carlsson, M., Hansteen, V.H., Gudiksen, B.V.: 2010, Chromospheric heating and structure as determined from high resolution 3D simulations. Mem. Soc. Astron. Ital. 81, 582 – 587.

    ADS  Google Scholar 

  • Cheung, M.C.M., Rempel, M., Title, A.M., Schüssler, M.: 2010, Simulation of the formation of a solar active region. Astrophys. J. 720, 233 – 244. doi: 10.1088/0004-637X/720/1/233 .

    Article  ADS  Google Scholar 

  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149 – 173.

    Article  ADS  Google Scholar 

  • Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529 – 1542. doi: 10.1088/0004-637X/697/2/1529 .

    Article  ADS  Google Scholar 

  • Fang, F., Manchester, W., Abbett, W.P., van der Holst, B.: 2010a, Simulation of flux emergence from the convection zone to the corona. Astrophys. J. 714, 1649 – 1657. doi: 10.1088/0004-637X/714/2/1649 .

    Article  ADS  Google Scholar 

  • Fang, F., Manchester, W.B., Abbett, W.P., van der Holst, B., Schrijver, C.J.: 2010b, Simulation of flux emergence in solar active regions. In: AGU Fall Meeting Abstracts, A1781.

    Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics. V – Response to thick-target heating. VI – Chromospheric evaporation due to heating by nonthermal electrons. VII – Dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414 – 441. doi: 10.1086/162901 .

    Article  ADS  Google Scholar 

  • Galsgaard, K., Archontis, V., Moreno-Insertis, F., Hood, A.W.: 2007, The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties. Astrophys. J. 666, 516 – 531. doi: 10.1086/519756 .

    Article  ADS  Google Scholar 

  • Georgobiani, D., Zhao, J., Kosovichev, A.G., Benson, D., Stein, R.F., Nordlund, Å.: 2007, Local helioseismology and correlation tracking analysis of surface structures in realistic simulations of solar convection. Astrophys. J. 657, 1157 – 1161. doi: 10.1086/511148 .

    Article  ADS  Google Scholar 

  • Krasnoselskikh, V., Vekstein, G., Hudson, H.S., Bale, S.D., Abbett, W.P.: 2010, Generation of electric currents in the chromosphere via neutral–ion drag. Astrophys. J. 724, 1542 – 1550. doi: 10.1088/0004-637X/724/2/1542 .

    Article  ADS  Google Scholar 

  • Kurganov, A., Levy, D.: 2000, A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22(4), 1461 – 1488.

    Article  MathSciNet  MATH  Google Scholar 

  • Lundquist, L.L., Fisher, G.H., McTiernan, J.M.: 2008, Forward modeling of active region coronal emissions. I. Methods and testing. Astrophys. J. Suppl. 179, 509 – 533. doi: 10.1086/592775 .

    Article  ADS  Google Scholar 

  • Magara, T.: 2006, Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the Sun. Astrophys. J. 653, 1499 – 1509. doi: 10.1086/508926 .

    Article  ADS  Google Scholar 

  • Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588 – 596. doi: 10.1086/421516 .

    Article  ADS  Google Scholar 

  • Martínez-Sykora, J., Hansteen, V., Carlsson, M.: 2008, Twisted flux tube emergence from the convection zone to the corona. Astrophys. J. 679, 871 – 888. doi: 10.1086/587028 .

    Article  ADS  Google Scholar 

  • Martínez-Sykora, J., Hansteen, V., Carlsson, M.: 2009, Twisted flux tube emergence from the convection zone to the corona. II. Later states. Astrophys. J. 702, 129 – 140. doi: 10.1088/0004-637X/702/1/129 .

    Article  ADS  Google Scholar 

  • McClymont, A.N., Canfield, R.C.: 1983, Flare loop radiative hydrodynamics. I – Basic methods. Astrophys. J. 265, 483 – 506. doi: 10.1086/160692 .

    Article  ADS  Google Scholar 

  • Mihalas, D.: 1978, Stellar Atmospheres, 2nd edn. San Francisco, Freeman.

    Google Scholar 

  • Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V.: 2006, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909 – 923. doi: 10.1051/0004-6361:20065950 .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Fisher, G.H., Acton, L.W., Longcope, D.W., Johns-Krull, C.M., Kankelborg, C.C., Metcalf, T.R.: 2003, The relationship between X-Ray radiance and magnetic flux. Astrophys. J. 598, 1387 – 1391. doi: 10.1086/378944 .

    Article  ADS  Google Scholar 

  • Rempel, M., Schüssler, M., Knölker, M.: 2009, Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640 – 649. doi: 10.1088/0004-637X/691/1/640 .

    Article  ADS  Google Scholar 

  • Rogers, F.J.: 2000, Ionization equilibrium and equation of state in strongly coupled plasmas. Phys. Plasmas 7, 51 – 58. doi: 10.1063/1.873815 .

    Article  ADS  Google Scholar 

  • Seaton, M.J.: 2005, Opacity project data on CD for mean opacities and radiative accelerations. Mon. Not. Roy. Astron. Soc. 362, 1 – 3. doi: 10.1111/j.1365-2966.2005.00019.x .

    Article  ADS  Google Scholar 

  • Stein, R.F., Nordlund, Å.: 2006, Solar small-scale magnetoconvection. Astrophys. J. 642, 1246 – 1255. doi: 10.1086/501445 .

    Article  ADS  Google Scholar 

  • Steiner, O., Rezaei, R., Schaffenberger, W., Wedemeyer-Böhm, S.: 2008, The horizontal internetwork magnetic field: numerical simulations in comparison to observations with Hinode. Astrophys. J. Lett. 680, L85 – L88. doi: 10.1086/589740 .

    Article  ADS  Google Scholar 

  • Stone, J.M., Norman, M.L.: 1992, ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. 80, 791 – 818. doi: 10.1086/191681 .

    Article  ADS  Google Scholar 

  • Tobias, S.M., Brummell, N.H., Clune, T.L., Toomre, J.: 2001, Transport and storage of magnetic Field by overshooting turbulent compressible convection. Astrophys. J. 549, 1183 – 1203. doi: 10.1086/319448 .

    Article  ADS  Google Scholar 

  • Vögler, A., Schüssler, M.: 2007, A solar surface dynamo. Astron. Astrophys. 465, 43 – 46. doi: 10.1051/0004-6361:20077253 .

    Article  Google Scholar 

  • Young, P.R., Del Zanna, G., Landi, E., Dere, K.P., Mason, H.E., Landini, M.: 2003, CHIANTI – an atomic database for emission lines. VI. Proton rates and other improvements. Astrophys. J. Suppl. 144, 135 – 152. doi: 10.1086/344365 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Abbett.

Additional information

Solar Flare Magnetic Fields and Plasmas

Guest Editors: Y. Fan and G.H. Fisher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbett, W.P., Fisher, G.H. Radiative Cooling in MHD Models of the Quiet Sun Convection Zone and Corona. Sol Phys 277, 3–20 (2012). https://doi.org/10.1007/s11207-011-9817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9817-3

Keywords

Navigation