Skip to main content
Log in

Sharp Changes of Solar Wind Ion Flux and Density Within and Outside Current Sheets

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SCIF:

Sharp change of ion flux

IMF:

Interplanetary magnetic field

SBC:

Sector boundary crossing

HCS:

Heliospheric current sheet

CIR:

Corotating interaction region

CME:

Coronal mass ejection

ULF:

Ultra low frequency

MC:

Magnetic cloud

References

  • Blanco, J.J., Rodriguez-Pacheco, J., Hidalgo, M.A., Sequeiros, J.: 2006, Analysis of the heliospheric current sheet fine structure: Single or multiple current sheets. J. Atmos. Solar-Terr. Phys. 68, 2173 – 2181.

    Article  ADS  Google Scholar 

  • Borodkova, N.L., Zastenker, G.N., Riazantseva, O., Richardson, J.D.: 2005, Large and sharp solar wind dynamic pressure variations as a source of geomagnetic field disturbances in the outer magnetosphere (at the geosynchronous orbits). Planet. Space Sci. 53, 25 – 32.

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2008, Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU. J. Geophys. Res. 113, A08110.

    Article  Google Scholar 

  • Borrini, G., Gosling, J., Bame, S., Feldman, W., Wilcox, J.: 1981, Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU. J. Geophys. Res. 86, 4565 – 4573.

    Article  ADS  Google Scholar 

  • Briggs, P.R., Armstrong, T.P.: 1984, Observations of interplanetary energetic ion enhancements near magnetic sector boundaries. Geophys. Res. Lett. 11, 27 – 30.

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V.: 2005, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 2. http://www.livingreviews.org/lrsp-2005-4 .

  • Crooker, N.U., Huang, C.-L., Lamassa, S.M., Larson, D.E., Kahler, S.W., Spence, H.E.: 2004, Heliospheric plasma sheets. J. Geophys. Res. 109, A03107.

    Article  Google Scholar 

  • Dalin, P.A., Zastenker, G.N., Nozdrachev, M.N., Veselovsky, I.S.: 2002a, Properties of large and sharp impulses in the solar wind. Int. J. Geomagn. Aeron. 3, 51 – 56.

    Google Scholar 

  • Dalin, P.A., Zastenker, G.N., Paularena, K.I., Richardson, J.D.: 2002b, A survey of large, rapid solar wind dynamic pressure changes observed by Interball-1 and IMP 8. Ann. Geophys. 20, 293 – 299.

    Article  ADS  Google Scholar 

  • Gosling, J.T., McComas, D.J., Skoug, R.M., Smith, C.W.: 2006, Magnetic reconnection at the heliospheric current sheet and the formation of closed magnetic field lines in the solar wind. Geophys. Res. Lett. 33, L17102.

    Article  ADS  Google Scholar 

  • Hakamada, K.: 1980, Geomagnetic activity at the time of heliospheric current sheet crossings. Geophys. Res. Lett. 7, 653 – 656.

    Article  ADS  Google Scholar 

  • Hammond, C.M., Feldman, W.C., Phillips, J.L., Goldstein, B.E., Balogh, A.: 1995, Solar wind double ion beams and the heliospheric current sheet. J. Geophys. Res. 100, 7881 – 7889.

    Article  ADS  Google Scholar 

  • Hirshberg, J., Colburn, D.S.: 1973, Geomagnetic activity at sector boundaries. J. Geophys. Res. 78, 3952 – 3957.

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: 1972, Supergranulation-driven Alfvén waves in the solar chromosphere, and related phenomena. Cosm. Electrodyn. 2, 423 – 444.

    Google Scholar 

  • Hollweg, J.V.: 1986, Transition region, corona, and solar wind in coronal holes. J. Geophys. Res. 91, 4111 – 4125.

    Article  ADS  Google Scholar 

  • Khabarova, O.V., Zastenker, G.N.: 2008, Sharp and sizeable changes of solar wind ion flux as a feature of dense non-CIR turbulent regions. Geoph. Res. Abstracts, 10, EGU2008-A-09908.

    Google Scholar 

  • Lacombe, C., Salem, C., Mangeney, A., Steinberg, J.-L., Macsimovic, M., Bosqued, J.M.: 2000, Latitudinal distribution of the solar wind properties in the low- and high-pressure regimes: Wind observations. Ann. Geophys. 18, 852 – 865.

    Article  ADS  Google Scholar 

  • Lavraud, B., Denton, M.H., Thomsen, M.F., Borovsky, J.E., Friedel, R.H.W.: 2005, Superposed epoch analysis of dense plasma access to geosynchronous orbit. Ann. Geophys. 23, 2519 – 2529.

    Article  ADS  Google Scholar 

  • Li, X.: 2003, Transition region, coronal heating and the fast solar wind. Astron. Astrophys. 406, 345 – 356.

    Article  ADS  Google Scholar 

  • Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1. http://www.livingreviews.org/lrsp-2006-1 .

    ADS  Google Scholar 

  • Marsch, E., Liu, S.: 1993, Structure functions and intermittency of velocity fluctuations in the inner solar wind. Ann. Geophys. 11, 227 – 238.

    ADS  Google Scholar 

  • Murphy, N., Smith, E.J., Burton, M.E., Winterhalter, D., McComas, D.J.: 1993, Energetic ion beams near the heliospheric current sheet: Possible evidence for reconnection. Jet Propulsion Lab. (NASA) Technical Report. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/35959/1/93-1689.pdf .

  • Neugebauer, M., Liewer, P.C., Goldstein, B.E., Zhou, X., Steinberg, J.T.: 2004, Solar wind stream interaction regions without sector boundaries. J. Geophys. Res. 109, A10102.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1963, Interplanetary Dynamical Processes, Interscience, New York.

    MATH  Google Scholar 

  • Parkhomov, V.A., Riazantseva, M.O., Zastenker, G.N.: 2005, Local amplification of auroral electrojet as response to sharp solar wind dynamic pressure change on June 26, 1998. Planet. Space Sci. 53, 265 – 274.

    Article  ADS  Google Scholar 

  • Phan, T.D., Gosling, J.T., Davis, M.S.: 2009, Prevalence of extended reconnection X-lines in the solar wind at 1 AU. Geophys. Res. Lett. 36, L09108.

    Article  Google Scholar 

  • Qin, G., Li, G.: 2008, Effect of flux tubes in the solar wind on the diffusion of energetic particles. Astrophys. J. 682, L129 – L132.

    Article  ADS  Google Scholar 

  • Riazantseva, M.O., Dalin, P.A., Zastenker, G.N.: 2002, Statistical analysis of fast and large impulses of solar wind ion flux (density) as measured by Interball-1. Soln.-zemn. fiz. 2, 89 – 92.

    Google Scholar 

  • Riazantseva, M.O., Khabarova, O.V., Zastenker, G.N.: 2005, Sharp boundaries of solar wind plasma structures and an analysis of their pressure balance. Cosm. Res. 43, 157 – 164.

    Article  ADS  Google Scholar 

  • Riazantseva, M.O., Dalin, P.A., Zastenker, G.N., Parhomov, V.A., Eselevich, V.G., Eselevich, M.V., Richardson, J.: 2003a, Properties of sharp and large changes in the solar wind ion flux (density). Cosm. Res. 41, 395 – 404.

    Google Scholar 

  • Riazantseva, M.O., Dalin, P.A., Zastenker, G.N., Richardson, J.: 2003b, Orientation of sharp fronts in the solar wind plasma. Cosm. Res. 41, 405 – 416.

    Google Scholar 

  • Riazantseva, M.O., Zastenker, G.N., Richardson, J.D., Eiges, P.E.: 2005, Sharp boundaries of small- and middle-scale solar wind structures. J. Geophys. Res. 110, A12110.

    Article  ADS  Google Scholar 

  • Riazantseva, M.O., Khabarova, O.V., Zastenker, G.N., Richardson, J.D.: 2007, Sharp boundaries of the solar wind plasma structures and their relationship to the solar wind turbulence. Adv. Space Res. 40, 1802 – 1806.

    Article  ADS  Google Scholar 

  • Roberts, D.A., Keiter, P.A., Goldstein, M.L.: 2005, Origin and dynamics of the heliospheric streamer belt and current sheet. J. Geophys. Res. 110, A06102.

    Article  Google Scholar 

  • Romanova, N., Pilipenko, V., Crosby, N., Khabarova, O.: 2007, ULF wave index and its possible applications in space physics. Bulg. J. Phys. 34, 136 – 148. http://www.bjp-bg.com/papers/bjp2007_2_136-148.pdf .

    Google Scholar 

  • Safrankova, J., Zastenker, G.N., Nemecek, Z., et al.: 1997, Small scale observations of magnetopause motion: Preliminary results of the INTERBALL project. Ann. Geophys. 15, 562 – 569.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 1990, Large-scale structure of the interplanetary medium. In: Schewenn, R., Marsch, E. (eds.) Physics of the Inner Heliosphere I, Springer, Berlin, 99 – 181.

    Google Scholar 

  • Smith, E.J.: 2001, The heliospheric current sheet. J. Geophys. Res. 106, 15819 – 15831.

    Article  ADS  Google Scholar 

  • Svalgaard, L.: 1973, Geomagnetic responses to the solar wind and solar activity, NASA, SUIPR report no. 555. http://www.leif.org/research/Geomagnetic-Response-to-Solar-Wind.pdf .

  • Svalgaard, L.: 1975, On the use of Godhavn H component as an indictor of the interplanetary sector polarity. J. Geophys. Res. 80, 2717 – 2722.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Wilcox, J.M., Scherrer, P.H., Howard, R.: 1975, The Sun’s magnetic sector structure. Solar Phys. 45, 83 – 91.

    Article  ADS  Google Scholar 

  • Velli, M., Grappin, R.: 1993, Properties of the solar wind. Adv. Space Res. 13, 49 – 58.

    Article  ADS  Google Scholar 

  • von Steiger, R., Schwadron, N., Fisk, L., Geiss, J., Gloeckler, G., Hefti, S., et al.: 2000, Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res. 105, 27217 – 27238.

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 1993, Flux-tube divergence, coronal heating, and the solar wind. Astrophys. J. Lett. 410, L123 – L126.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 – 732.

    Article  ADS  Google Scholar 

  • Watari, S., Watanabe, T.: 2006, Sector boundary crossings and geomagnetic activities. Adv. Geosi. 2(ST), 135 – 142.

    Article  Google Scholar 

  • Wilcox, J.M., Ness, N.F.: 1965, Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res. 70, 5793 – 5805.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Khabarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khabarova, O., Zastenker, G. Sharp Changes of Solar Wind Ion Flux and Density Within and Outside Current Sheets. Sol Phys 270, 311–329 (2011). https://doi.org/10.1007/s11207-011-9719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9719-4

Keywords

Navigation