Skip to main content
Log in

Multilevel Analysis of Oscillation Motions in Active Regions of the Sun

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The nature of the three-minute and five-minute oscillations observed in sunspots is considered to be an effect of propagation of magnetohydrodynamic (MHD) waves from the photosphere to the solar corona. However, the real modes of these waves and the nature of the filters that result in rather narrow frequency bands of these modes are still far from being generally accepted, in spite of a large amount of observational material obtained in a wide range of wave bands. The significance of this field of research is based on the hope that local seismology can be used to find the structure of the solar atmosphere in magnetic tubes of sunspots. We expect that substantial progress can be achieved by simultaneous observations of the sunspot oscillations in different layers of the solar atmosphere in order to gain information on propagating waves. In this study we used a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere – corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to the optical ones. This implies an MHD wave traveling upward inside the umbral magnetic tube of the sunspot. For the five-minute oscillations the similarity in spectral details could be found only for optical oscillations at the chromospheric level in the umbral region or very close to it. The time delays seem to be similar. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records. Their nature still requires further observational and theoretical study for even a preliminary discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckers, J.M., Schultz, R.B.: 1972, Solar Phys. 27, 61.

    Article  ADS  Google Scholar 

  • Bhatnagar, A., Livingston, W.C., Harvey, J.W.: 1972, Solar Phys. 27, 80.

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., McAteer, R.T.J., Mathioudakis, M., Williams, D.R., Keenan, F.P.: 2004, Astrophys. J. 604, 936.

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Lagg, A., Solanki, S.K.: 2007, Astrophys. J. 671, 1005.

    Article  ADS  Google Scholar 

  • Brisken, W.F., Zirin, H.: 1997, Astrophys. J. 478, 814.

    Article  ADS  Google Scholar 

  • Bogdan, T.J.: 2000, Solar Phys. 192, 373.

    Article  ADS  Google Scholar 

  • Bogdan, T.J., Judge, P.G.: 2006, Philos. Trans. Roy. Soc. London A 364, 313.

    Article  ADS  Google Scholar 

  • Brynildsen, N., Maltby, P., Fredvik, T., Kjeldseth-Moe, O.: 2002, Solar Phys. 207, 259.

    Article  ADS  Google Scholar 

  • Gelfreikh, G.B., Lubyshev, B.I.: 1979, Soviet Astron. 23, 316.

    ADS  Google Scholar 

  • Gelfreikh, G.B., Nagovitsyn, Yu.A., Nagovitsyna, E.Yu.: 2006, Publ. Astron. Soc. Japan 58, 29.

    ADS  Google Scholar 

  • Gelfreikh, G.B., Grechnev, V.V., Kosugi, T., Shibasaki, K.: 1999, Solar Phys. 185, 177.

    Article  ADS  Google Scholar 

  • Fludra, A.: 2001, Astron. Astrophys. 368, 639.

    Article  ADS  Google Scholar 

  • Kobanov, N.I.: 2000, Solar Phys. 196, 120.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Makarchik, D.V.: 2003, In: Pevtsov, A.A., Uitenbroek, H. (eds.) Current Theoretical Models and High Resolution Solar Observations: Preparing for ATST CS-286, Astron. Soc. Pac., San Francisco, 251.

    Google Scholar 

  • Kobanov, N.I., Makarchik, D.V.: 2004a, Astron. Astrophys. 424, 671.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Makarchik, D.V.: 2004b, Astron. Rep. 48, 954.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Kolobov, D.I., Makarchik, D.V.: 2006, Solar Phys. 238, 231.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Kolobov, D.I., Chupin, S.A.: 2008, Astron. Lett. 34, 133.

    Article  ADS  Google Scholar 

  • Lites, B.W.: 1992, In: Thomas, J.H., Weiss, N.O. (eds.) Sunspots: Theory and Observations, Kluwer, Dordrecht, 261.

    Google Scholar 

  • Lites, B.W., Thomas, J.H., Bogdan, T.J., Cally, P.S.: 1998, Astrophys. J. 497, 464.

    Article  ADS  Google Scholar 

  • Nagashima, K., Sekii, T., Kosovichev, A.G., Shibahashi, H., Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B., Nagata, S., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: 2007, Publ. Astron. Soc. Japan 59, 631.

    ADS  Google Scholar 

  • Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., Hanaoka, Y., Torii, C., Sekiguchi, H., Bushimata, T., Kawashima, S., Shinohara, N., Irimajiri, Y., Koshiishi, H., Kosugi, T., Shiomi, Y., Sawa, M., Kai, K.: 1994, Proc. IEEE 82, 705.

    Article  ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C.E., Gelfreikh, G.B., Kundu, M.R., Dere, K.P., Korzhavin, A.N., Bogod, V.M.: 1996, Solar Phys. 166, 55.

    Article  ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C.E., Gelfreikh, G.B., Bogod, V.M., Gontikakis, C.: 2002, Astron. Astrophys. 386, 386.

    Article  Google Scholar 

  • Rimmele, T.R.: 1995, Astrophys. J. 445, 511.

    Article  ADS  Google Scholar 

  • Rouppe van der Voort, L.H.M.: 2003, Astron. Astrophys. 397, 757.

    Article  ADS  Google Scholar 

  • Shibasaki, K.: 2001a, Astrophys. J. 550, 1113.

    Article  ADS  Google Scholar 

  • Shibasaki, K.: 2001b, Astrophys. J. 557, 326.

    Article  ADS  Google Scholar 

  • Staude, J.: 1999, In: Schmieder, B., Hofman, A., Staude, J. (eds.) Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations CS-184, Astron. Soc. Pac., San Francisco, 113.

    Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • Torrence, C., Webster, P.J.: 1999, J. Climate 12, 2679.

    Article  ADS  Google Scholar 

  • Zhugzhda, Y.D., Dzhalilov, N.S.: 1982, Astrophys. J. 112, 16.

    ADS  Google Scholar 

  • Zhugzhda, Y.D., Balthasar, H., Staude, J.: 2000, Astrophys. J. 355, 347.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Abramov-Maximov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramov-Maximov, V.E., Gelfreikh, G.B., Kobanov, N.I. et al. Multilevel Analysis of Oscillation Motions in Active Regions of the Sun. Sol Phys 270, 175–189 (2011). https://doi.org/10.1007/s11207-011-9716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9716-7

Keywords

Navigation