Skip to main content
Log in

Particle Acceleration and Propagation in Strong Flares without Major Solar Energetic Particle Events

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimov, V.V., Ambrož, P., Belov, A.V., Berlicki, A., Chertok, I.M., Karlický, M., et al.: 1996, Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma-ray flare of June 15, 1991. Solar Phys. 166, 107 – 134.

    Article  ADS  Google Scholar 

  • Aurass, H., Landini, F., Poletto, G.: 2009, Coronal current sheet signatures during the 17 May 2002 CME-flare. Astron. Astrophys. 506, 901 – 911.

    Article  ADS  Google Scholar 

  • Axisa, F.: 1974, On the role of the magnetic configuration of flares for production of type III solar radio bursts. Solar Phys. 35, 207 – 224.

    Article  ADS  Google Scholar 

  • Balch, C.C.: 2008, Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6, S01001.

    Article  Google Scholar 

  • Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131 – 188.

    Article  ADS  Google Scholar 

  • Belov, A., Kurt, V., Mavromichalaki, H., Gerontidou, M.: 2007, Peak-size distributions of proton fluxes and associated soft X-ray flares. Solar Phys. 246, 457 – 470.

    Article  ADS  Google Scholar 

  • Benz, A.O., Brajša, R., Magdalenić, J.: 2007, Are there radio-quiet solar flares? Solar Phys. 240, 263 – 270.

    Article  ADS  Google Scholar 

  • Benz, A.O., Grigis, P.C., Csillaghy, A., Saint-Hilaire, P.: 2005, Survey on solar X-ray flares and associated coherent radio emissions. Solar Phys. 226, 121 – 142.

    Article  ADS  Google Scholar 

  • Bougeret, J.L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., et al.: 1995, Waves: The radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 71, 231 – 263.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402.

    Article  ADS  Google Scholar 

  • Bruggmann, G., Vilmer, N., Klein, K.L., Kane, S.R.: 1994, Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst. Solar Phys. 149, 171 – 193.

    Article  ADS  Google Scholar 

  • Cane, H.V., Erickson, W.C., Prestage, N.P.: 2002, Solar flares, type III radio bursts, coronal mass ejections and energetic particles. J. Geophys. Res. 107, 1315.

    Article  Google Scholar 

  • Cliver, E.W., McNamara, L.F., Gentile, L.C.: 1985, Peak flux density spectra of large solar radio bursts and proton emission from flares. J. Geophys. Res. 90, 6251 – 6266.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Dennis, B.R., Kiplinger, A.L., Kane, S.R., Neidig, D.F., Sheeley, N.R., Koomen, M.J.: 1986, Solar gradual hard X-ray bursts and associated phenomena. Astrophys. J. 305, 920 – 935.

    Article  ADS  Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SoHO mission. Solar Phys. 162, 291 – 312.

    Article  ADS  Google Scholar 

  • Démoulin, P., Klein, K.L., Goff, C.P., van Driel-Gesztelyi, L., Culhane, J.L., Mandrini, C.H., Matthews, S.A., Harra, L.K.: 2007, Decametric N burst: A consequence of the interaction of two coronal mass ejections. Solar Phys. 240, 301 – 313.

    Article  ADS  Google Scholar 

  • Dröge, W.: 1996, Energetic solar electron spectra and gamma-ray observations. In: Ramaty, R., Mandzhavidze, N., Hua, X.M. (eds.) High Energy Solar Physics, AIP Conf. Ser. 374, 78 – 85.

    Google Scholar 

  • Dryer, M., Andrews, M.D., Aurass, H., DeForest, C., Galvin, A.B., Garcia, H., et al.: 1998, The solar minimum active region 7978, its X2.6/1B flare, CME, and interplanetary shock propagation of 9 July 1996. Solar Phys. 181, 159 – 183.

    Article  ADS  Google Scholar 

  • Garcia, H.A.: 2004, Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays. Space Weather 2, S02002.

    Article  ADS  Google Scholar 

  • Gold, R.E., Krimigis, S.M., Hawkins, S.E., Haggerty, D.K., Lohr, D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.: 1998, Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev. 86, 541 – 562.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S.: 2009, Major solar flares without coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, 283 – 286.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Birn, J., Hesse, M.: 1995, Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophys. Res. Lett. 22, 869 – 872.

    Article  ADS  Google Scholar 

  • Guidice, D.A., Castelli, J.P.: 1975, Spectral distributions of microwave bursts. Solar Phys. 44, 155 – 172.

    Article  ADS  Google Scholar 

  • Haggerty, D.K., Roelof, E.C.: 2002, Impulsive near-relativistic solar electron events: delayed injection with respect to solar electromagnetic emission. Astrophys. J. 579, 841 – 853.

    Article  ADS  Google Scholar 

  • Hofmann, A., Ruždjak, V.: 2007, Favourable magnetic field configurations for generation of flare-associated meter-wave type III radio bursts. Solar Phys. 240, 107 – 119.

    Article  ADS  Google Scholar 

  • Ippolito, A., Pommois, P., Zimbardo, G., Veltri, P.: 2005, Magnetic connection from the Earth to the solar corona, flare positions and solar energetic particle observations. Astron. Astrophys. 438, 705 – 711.

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1982a, Radio burst characteristics of solar proton flares. Astrophys. J. 261, 710 – 719.

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1982b, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439 – 3448.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Hundhausen, A.J.: 1992, The magnetic topology of solar coronal structures following mass ejections. J. Geophys. Res. 97, 1619 – 1631.

    Article  ADS  Google Scholar 

  • Kerdraon, A., Delouis, J.: 1997, The Nançay radioheliograph. In: Trottet, G. (ed.) Coronal Physics from Radio and Space Observations, Lecture Notes in Physics 483, Springer, Berlin, 192 – 201.

    Chapter  Google Scholar 

  • Klein, K.L., Trottet, G., Vilmer, N.: 2009, A search for solar energetic particle events with CME-less flares. Proc. 31st Int. Cosmic Ray Conf., Paper 0634. http://icrc2009.uni.lodz.pl/proc/pdf/icrc0634.pdf .

  • Klein, K.L., Trottet, G., Klassen, A.: 2010, Energetic particle acceleration and propagation in strong CME-less flares. Solar Phys. 263, 185 – 208.

    Article  ADS  Google Scholar 

  • Klein, K.L., Schwartz, R.A., McTiernan, J.M., Trottet, G., Klassen, A., Lecacheux, A.: 2003, An upper limit of the number and energy of electrons accelerated at an extended coronal shock wave. Astron. Astrophys. 409, 317 – 324.

    Article  ADS  Google Scholar 

  • Klein, K.L., Krucker, S., Lointier, G., Kerdraon, A.: 2008, Open magnetic flux tubes in the corona and the transport of solar energetic particles. Astron. Astrophys. 486, 589 – 596.

    Article  ADS  Google Scholar 

  • Kocharov, L.G., Kovaltsov, G.A., Kocharov, G.E., Chuikin, E.I., Usoskin, I.G., Shea, M.A., Smart, D.F., Melnikov, V.F., Podstrigach, T.S., Armstrong, T.P.: 1994, Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: continuous acceleration of relativistic particles. Solar Phys. 150, 267 – 283.

    Article  ADS  Google Scholar 

  • Krucker, S., Kontar, E.P., Christe, S., Lin, R.P.: 2007, Solar flare electron spectra at the Sun and near the Earth. Astrophys. J. Lett. 663, 109 – 112.

    Article  ADS  Google Scholar 

  • Laitinen, T., Klein, K.L., Kocharov, L., Torsti, J., Trottet, G., Bothmer, V., Kaiser, M.L., Rank, G., Reiner, M.J.: 2000, Solar energetic particle event and radio bursts associated with the 1996 July 9 flare and coronal mass ejection. Astron. Astrophys. 360, 729 – 741.

    ADS  Google Scholar 

  • Laurenza, M., Cliver, E.W., Hewitt, J., Storini, M., Ling, A.G., Balch, C.C., Kaiser, M.L.: 2009, A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7, S04008.

    Article  Google Scholar 

  • Marqué, C., Posner, A., Klein, K.L.: 2006, Solar energetic particles and radio-silent fast coronal mass ejections. Astrophys. J. 642, 1222 – 1235.

    Article  ADS  Google Scholar 

  • Masson, S., Klein, K.L., Bütikofer, R., Flückiger, E.O., Kurt, V., Yushkov, B., Krucker, S.: 2009, Acceleration of relativistic protons during the 20 January 2005 flare and CME. Solar Phys. 257, 305 – 322.

    Article  ADS  Google Scholar 

  • Melnikov, V.F., Gary, D.E., Nita, G.M.: 2008, Peak frequency dynamics in solar microwave bursts. Solar Phys. 253, 43 – 73.

    Article  ADS  Google Scholar 

  • Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., Kawashima, S.: 1985, The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Japan 37, 163 – 170.

    ADS  Google Scholar 

  • Nindos, A., Aurass, H., Klein, K.L., Trottet, G.: 2008, Radio emission of flares and coronal mass ejections. Solar Phys. 253, 3 – 41.

    Article  ADS  Google Scholar 

  • Nita, G.M., Gary, D.E., Lee, J.: 2004, Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array. Astrophys. J. 605, 528 – 545.

    Article  ADS  Google Scholar 

  • Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: high coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241.

    Article  ADS  Google Scholar 

  • Pick, M.: 1986, Observations of radio continua and terminology. Solar Phys. 104, 19 – 32.

    Article  ADS  Google Scholar 

  • Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 16, 1 – 153.

    Article  ADS  Google Scholar 

  • Pick, M., Maia, D., Kerdraon, A., Howard, R., Brueckner, G.E., Michels, D.J., et al.: 1998, Joint Nancay Radioheliograph and LASCO observations of coronal mass ejections – II. The 9 July 1996 event. Solar Phys. 181, 455 – 468.

    Article  ADS  Google Scholar 

  • Rieger, E., Treumann, R.A., Karlický, M.: 1999, The radio-silent start of an intense solar gamma-ray flare. Solar Phys. 187, 59 – 75.

    Article  ADS  Google Scholar 

  • Simnett, G.M., Benz, A.O.: 1986, The role of metric and decimetric radio emission in the understanding of solar flares. Astron. Astrophys. 165, 227 – 234.

    ADS  Google Scholar 

  • Torsti, J., Valtonen, E., Lumme, M., Peltonen, P., Eronen, T., Louhola, M., et al.: 1995, Energetic particle experiment ERNE. Solar Phys. 162, 505 – 531.

    Article  ADS  Google Scholar 

  • Trottet, G.: 1986, Relative timing of hard X-rays and radio emissions during the different phases of solar flares – consequences for the electron acceleration. Solar Phys. 104, 145 – 163.

    Article  ADS  Google Scholar 

  • Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., Kuznetsov, A., Sunyaev, R., Terekhov, O.: 1998, A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare. Astron. Astrophys. 334, 1099 – 1111.

    ADS  Google Scholar 

  • Veronig, A.M., Brown, J.C.: 2004, A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Lett. 603, 117 – 120.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhang, J.: 2007, A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-class flares. Astrophys. J. 665, 1428 – 1438.

    Article  ADS  Google Scholar 

  • White, S.M., Kundu, M.R., Bastian, T.S., Gary, D.E., Hurford, G.J., Kucera, T., Bieging, J.H.: 1992, Multifrequency observations of a remarkable solar radio burst. Astrophys. J. 384, 656 – 664.

    Article  ADS  Google Scholar 

  • Zlobec, P., Messerotti, M., Ruzdjak, V., Vrsnak, B., Karlicky, M.: 1990, The role of the magnetic field intensity and geometry in the type III burst generation. Solar Phys. 130, 31 – 37.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-L. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, KL., Trottet, G., Samwel, S. et al. Particle Acceleration and Propagation in Strong Flares without Major Solar Energetic Particle Events. Sol Phys 269, 309–333 (2011). https://doi.org/10.1007/s11207-011-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9710-0

Keywords

Navigation