Skip to main content
Log in

Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent Than Others?

  • Solar Image Processing and Analysis
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Multiple recent investigations of solar magnetic-field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17 733 magnetograms in total) observed by SOHO’s Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i) a widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii) a lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately, for major solar-flare prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141 – 1149. doi: 10.1086/431732 .

    Article  ADS  Google Scholar 

  • Abramenko, V., Yurchyshyn, V.: 2010, Intermittency and multifractality spectra of the magnetic field in solar active regions. Astrophys. J. 722, 122 – 130. doi: 10.1088/0004-637X/722/1/122 .

    Article  ADS  Google Scholar 

  • Abramenko, V., Yurchyshyn, V., Wang, H.: 2008, Intermittency in the photosphere and corona above an active region. Astrophys. J. 681, 1669 – 1676. doi: 10.1086/588426 .

    Article  ADS  Google Scholar 

  • Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2002, Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the Sun. Astrophys. J. 577, 487 – 495. doi: 10.1086/342169 .

    Article  ADS  Google Scholar 

  • Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2003, Signature of an avalanche in solar flares as measured by photospheric magnetic fields. Astrophys. J. 597, 1135 – 1144. doi: 10.1086/378492 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Aschwanden, P.D.: 2008a, Solar flare geometries. I. The area fractal dimension. Astrophys. J. 674, 530 – 543. doi: 10.1086/524371 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Aschwanden, P.D.: 2008b, Solar flare geometries. II. The volume fractal dimension. Astrophys. J. 674, 544 – 553. doi: 10.1086/524370 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Parnell, C.E.: 2002, Nanoflare statistics from first principles: fractal geometry and temperature synthesis. Astrophys. J. 572, 1048 – 1071. doi: 10.1086/340385 .

    Article  ADS  Google Scholar 

  • Bak, P.: 1996, How Nature Works: The Science of Self-Organized Criticality, Copernicus Press, New York.

    MATH  Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K.: 1987, Self-organized criticality – An explanation of 1/f noise. Phys. Rev. Lett. 59, 381 – 384. doi: 10.1103/PhysRevLett.59.381 .

    Article  MathSciNet  ADS  Google Scholar 

  • Berger, T.E., Lites, B.W.: 2003, Weak-field magnetogram calibration using Advanced Stokes Polarimeter flux density maps – II. SOHO/MDI full-disk mode calibration. Solar Phys. 213, 213 – 229.

    Article  ADS  Google Scholar 

  • Biskamp, D., Welter, H.: 1989, Dynamics of decaying two-dimensional magnetohydrodynamic turbulence. Phys. Fluids, B Plasma Phys. 1, 1964 – 1979. doi: 10.1063/1.859060 .

    Article  Google Scholar 

  • Brandenburg, A., Tuominen, I., Nordlund, A., Pulkkinen, P., Stein, R.F.: 1990, 3-D simulation of turbulent cyclonic magneto-convection. Astron. Astrophys. 232, 277 – 291.

    ADS  Google Scholar 

  • Cadavid, A.C., Lawrence, J.K., Ruzmaikin, A.A., Kayleng-Knight, A.: 1994, Multifractal models of small-scale solar magnetic fields. Astrophys. J. 429, 391 – 399. doi: 10.1086/174329 .

    Article  ADS  Google Scholar 

  • Cattaneo, F., Emonet, T., Weiss, N.: 2003, On the Interaction between convection and magnetic fields. Astrophys. J. 588, 1183 – 1198. doi: 10.1086/374313 .

    Article  ADS  Google Scholar 

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297 – 309. doi: 10.1007/s11207-007-9074-7 .

    Article  ADS  Google Scholar 

  • Conlon, P.A., McAteer, R.T.J., Gallagher, P.T., Fennell, L.: 2010, Quantifying the evolving magnetic structure of active regions. Astrophys. J. 722, 577 – 585. doi: 10.1088/0004-637X/722/1/577 .

    Article  ADS  Google Scholar 

  • Dimitropoulou, M., Georgoulis, M., Isliker, H., Vlahos, L., Anastasiadis, A., Strintzi, D., Moussas, X.: 2009, The correlation of fractal structures in the photospheric and the coronal magnetic field. Astron. Astrophys. 505, 1245 – 1253. doi: 10.1051/0004-6361/200911852 .

    Article  ADS  Google Scholar 

  • Evertsz, C.J.G., Mandelbrot, B.B.: 1992, Self-similarity of harmonic measure on DLA. Physica A 185, 77 – 86. doi: 10.1016/0378-4371(92)90440-2 .

    Article  MathSciNet  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2006, Magnetic causes of solar coronal mass ejections: Dominance of the free magnetic energy over the magnetic twist alone. Astrophys. J. 644, 1258 – 1272. doi: 10.1086/503699 .

    Article  ADS  Google Scholar 

  • Fragos, T., Rantsiou, E., Vlahos, L.: 2004, On the distribution of magnetic energy storage in solar active regions. Astron. Astrophys. 420, 719 – 728. doi: 10.1051/0004-6361:20034570 .

    Article  ADS  Google Scholar 

  • Frisch, U.: 1995, Turbulence. The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Gallagher, P.T., Phillips, K.J.H., Harra-Murnion, L.K., Keenan, F.P.: 1998, Properties of the quiet Sun EUV network. Astron. Astrophys. 335, 733 – 745.

    ADS  Google Scholar 

  • Georgoulis, M.K.: 2005, Turbulence in the solar atmosphere: Manifestations and diagnostics via solar image processing. Solar Phys. 228, 5 – 27. doi: 10.1007/s11207-005-2513-4 .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109 – L112. doi: 10.1086/518718 .

    Article  ADS  Google Scholar 

  • Georgoulis, M., Kluiving, R., Vlahos, L.: 1995, Extended instability criteria in isotropic and anisotropic energy avalanches. Physica A 218, 191 – 213.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Raouafi, N.E., Henney, C.J.: 2008, Automatic active-region identification and azimuth disambiguation of the SOLIS/VSM full-disk vector magnetograms. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity CS-383, Astron. Soc. Pac., San Francisco, 107 – 114.

    Google Scholar 

  • Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Schmieder, B.: 2002, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506 – 528. doi: 10.1086/341195 .

    Article  ADS  Google Scholar 

  • Hewett, R.J., Gallagher, P.T., McAteer, R.T.J., Young, C.A., Ireland, J., Conlon, P.A., Maguire, K.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311 – 322. doi: 10.1007/s11207-007-9028-0 .

    Article  ADS  Google Scholar 

  • Hirzberger, J., Vazquez, M., Bonet, J.A., Hanslmeier, A., Sobotka, M.: 1997, Time series of solar granulation images. I. Differences between small and large granules in quiet regions. Astrophys. J. 480, 406. doi: 10.1086/303951 .

    Article  ADS  Google Scholar 

  • Hurlburt, N.E., Brummel, N.H., Toomre, J.: 1995, Local-area simulations of rotating compressible convection and associated mean flows. In: Hoeksema, J.T., Domingo, V., Fleck, B., Battrick, B. (eds.) Helioseismology SP-376, ESA, Noordwijk, 245 – 248.

    Google Scholar 

  • Janßen, K., Vögler, A., Kneer, F.: 2003, On the fractal dimension of small-scale magnetic structures in the Sun. Astron. Astrophys. 409, 1127 – 1134. doi: 10.1051/0004-6361:20031168 .

    Article  ADS  Google Scholar 

  • Jaynes, E.T.: 2003, Probability Theory: The Logic of Science, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Kluiving, R., Pasmanter, R.A.: 1996, Stochastic selfsimilar branching and turbulence. Physica A 228, 273 – 294.

    Article  ADS  Google Scholar 

  • Kolmogorov, A.: 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301 – 305.

    ADS  Google Scholar 

  • Kraichnan, R.H.: 1965, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385 – 1387. doi: 10.1063/1.1761412 .

    Article  MathSciNet  ADS  Google Scholar 

  • LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955 – 963. doi: 10.1086/522682 .

    Article  ADS  Google Scholar 

  • Lawrence, J.K., Ruzmaikin, A.A., Cadavid, A.C.: 1993, Multifractal measure of the solar magnetic field. Astrophys. J. 417, 805. doi: 10.1086/173360 .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595, 1296 – 1306. doi: 10.1086/377512 .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173 – 1186. doi: 10.1086/510282 .

    Article  ADS  Google Scholar 

  • Lites, B.W., Elmore, D.F., Streander, K.V.: 2001, The Solar-B Spectro-Polarimeter. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation CS-236, Astron. Soc. Pac., San Francisco, 33 – 40.

    Google Scholar 

  • Longcope, D.W., Fisher, G.H., Pevtsov, A.A.: 1998, Flux-tube twist resulting from helical turbulence: The sigma-effect. Astrophys. J. 507, 417 – 432. doi: 10.1086/306312 .

    Article  ADS  Google Scholar 

  • Mandelbrot, B.B.: 1983, The Fractal Geometry of Nature, Revised and enlarged edition, Freeman, New York.

    Google Scholar 

  • Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723, 634 – 640. doi: 10.1088/0004-637X/723/1/634 .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: A large-scale fractal dimension survey. Astrophys. J. 631, 628 – 635. doi: 10.1086/432412 .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Conlon, P.A.: 2010, Turbulence, complexity, and solar flares. Adv. Space Res. 45, 1067 – 1074. doi: 10.1016/j.asr.2009.08.026 .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Canfield, R.C., Hudson, H.S., Mickey, D.L., Wulser, J.P., Martens, P.C.H., Tsuneta, S.: 1994, Electric currents and coronal heating in NOAA active region 6952. Astrophys. J. 428, 860 – 866. doi: 10.1086/174295 .

    Article  ADS  Google Scholar 

  • Meunier, N.: 1999, Fractal analysis of Michelson Doppler Imager magnetograms: A contribution to the study of the formation of solar active regions. Astrophys. J. 515, 801 – 811. doi: 10.1086/307050 .

    Article  ADS  Google Scholar 

  • Nicolis, G., Prigogine, I.: 1989, Exploring Complexity. An Introduction, Freeman, New York.

    Google Scholar 

  • Reinard, A.A., Henthorn, J., Komm, R., Hill, F.: 2010, Evidence that temporal changes in solar subsurface helicity precede active region flaring. Astrophys. J. Lett. 710, L121 – L125. doi: 10.1088/2041-8205/710/2/L121 .

    Article  ADS  Google Scholar 

  • Roudier, T., Muller, R.: 1987, Structure of the solar granulation. Solar Phys. 107, 11 – 26.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429 .

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117 – L120. doi: 10.1086/511857 .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Zwaan, C., Balke, A.C., Tarbell, T.D., Lawrence, J.K.: 1992, Patterns in the photospheric magnetic field and percolation theory. Astron. Astrophys. 253, L1 – L4.

    ADS  Google Scholar 

  • Schroeder, M.: 1991, Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise, Freeman, New York.

    MATH  Google Scholar 

  • Seiden, P.E., Wentzel, D.G.: 1996, Solar active regions as a percolation phenomenon. II. Astrophys. J. 460, 522. doi: 10.1086/176989 .

    Article  ADS  Google Scholar 

  • Vlahos, L., Georgoulis, M.K.: 2004, On the self-similarity of unstable magnetic discontinuities in solar active regions. Astrophys. J. Lett. 603, L61 – L64. doi: 10.1086/383032 .

    Article  ADS  Google Scholar 

  • Vlahos, L., Fragos, T., Isliker, H., Georgoulis, M.: 2002, Statistical properties of the energy release in emerging and evolving active regions. Astrophys. J. Lett. 575, L87 – L90. doi: 10.1086/342826 .

    Article  ADS  Google Scholar 

  • Wentzel, D.G., Seiden, P.E.: 1992, Solar active regions as a percolation phenomenon. Astrophys. J. 390, 280 – 289. doi: 10.1086/171278 .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2005, Initial test of a Bayesian approach to solar flare prediction. Publ. Astron. Soc. Aust. 22, 153 – 156. doi: 10.1071/AS04062 .

    Article  ADS  Google Scholar 

  • Zhou, G., Wang, J., Wang, Y., Zhang, Y.: 2007, Quasi-simultaneous flux emergence in the events of October November 2003. Solar Phys. 244, 13 – 24. doi: 10.1007/s11207-007-9032-4 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis K. Georgoulis.

Additional information

Solar Image Processing and Analysis

Guest Editors: J. Ireland and C.A. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgoulis, M.K. Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent Than Others?. Sol Phys 276, 161–181 (2012). https://doi.org/10.1007/s11207-010-9705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-010-9705-2

Keywords

Navigation