Skip to main content
Log in

Vlasov – Maxwell, Self-consistent Electromagnetic Wave Emission Simulations in the Solar Corona

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

1.5D Vlasov – Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the context of solar physics. The simulations mimic the plasma emission mechanism and Larmor-drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that a 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to the Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. The generated perturbations consist of two parts: i) non-escaping (trapped) Langmuir type oscillations, which are localised in the regions of density inhomogeneity, and are highly filamentary, with the period of appearance of the filaments close to electron plasma frequency in the dense regions; and ii) escaping electromagnetic radiation with phase speeds close to the speed of light. When the density gradient is removed (i.e. when plasma becomes stable to the Larmor-drift instability) and a low density super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, the plasma emission mechanism generates non-escaping Langmuir type oscillations, which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips (the narrow-band line emission) observed in some dynamical spectra. Predictions of quasilinear theory are: i) the electron free streaming and ii) the long relaxation time of the beam, in accord with the analytic expressions. These are corroborated via direct, fully-kinetic simulation. Finally, the interplay of the Larmor-drift instability and plasma emission mechanism is studied by considering a dense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. The latter case enables one to study the deviations from the quasilinear theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, A., Bogdankevich, L., Rukhadze, A.: 1988, Foundations of Plasma Electrodynamics, Visshaia Shkola, Moscow (in Russian).

    Google Scholar 

  • Arons, J., Barnard, J.J.: 1986, Wave propagation in pulsar magnetospheres – Dispersion relations and normal modes of plasmas in superstrong magnetic fields. Astrophys. J. 302, 120 – 137. doi: 10.1086/163978 .

    Article  ADS  Google Scholar 

  • Aurass, H., Rausche, G., Berkebile-Stoiser, S., Veronig, A.: 2010, A microflare with hard X-ray-correlated gyroresonance line emission at 314 MHz. Astron. Astrophys. 515, A1-1-9. doi: 10.1051/0004-6361/200913132 .

    Article  ADS  Google Scholar 

  • Cairns, R.: 1985, Plasma Physics, Blackie, Glasgow, 124 – 128.

    Google Scholar 

  • Ginzburg, V.L., Zhelezniakov, V.V.: 1958, On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Sov. Astron. 2, 653.

    ADS  Google Scholar 

  • Hillaris, A., Alissandrakis, C.E., Vlahos, L.: 1988, Dynamics of sub-relativistic electron beams in magnetic traps – A model for solar N-bursts. Astron. Astrophys. 195, 301 – 309.

    ADS  Google Scholar 

  • Hillaris, A., Alissandrakis, C.E., Caroubalos, C., Bougeret, J.: 1990, Computation of electron beam parameters for solar type III and J bursts. Astron. Astrophys. 229, 216 – 223.

    ADS  Google Scholar 

  • Hillaris, A., Alissandrakis, C.E., Bougeret, J., Caroubalos, C.: 1999, Dynamics of subrelativistic electron beams in the solar corona. Type III group analysis. Astron. Astrophys. 342, 271 – 278.

    ADS  Google Scholar 

  • Hsu, J.: 2010, Relativistic theory of mode conversion at plasma frequency. Phys. Plasmas 17(3), 032104. doi: 10.1063/1.3322854 .

    Article  ADS  Google Scholar 

  • Kaplan, S.A., Tsytovich, V.N.: 1968, Radio emission from beams of fast particles under cosmic conditions. Sov. Astron. 11, 956 – 964.

    ADS  Google Scholar 

  • Karlický, M., Kosugi, T.: 2004, Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159 – 1168. doi: 10.1051/0004-6361:20034323 .

    Article  ADS  Google Scholar 

  • Kasaba, Y., Matsumoto, H., Omura, Y.: 2001, One- and two-dimensional simulations of electron beam instability: Generation of electrostatic and electromagnetic 2f p waves. J. Geophys. Res. 106, 18693 – 18712. doi: 10.1029/2000JA000329 .

    Article  ADS  Google Scholar 

  • Kontar, E.P., Pécseli, H.L.: 2002, Nonlinear development of electron-beam-driven weak turbulence in an inhomogeneous plasma. Phys. Rev. E 65(6), 066408. doi: 10.1103/PhysRevE.65.066408 .

    Article  ADS  Google Scholar 

  • Li, B., Cairns, I.H., Robinson, P.A.: 2008, Simulations of coronal type III solar radio bursts: 1. Simulation model. J. Geophys. Res. 113, 6104. doi: 10.1029/2007JA012957 .

    Article  Google Scholar 

  • Mel’Nik, V.N., Lapshin, V., Kontar, E.: 1999, Propagation of a monoenergetic electron beam in the solar corona. Solar Phys. 184, 353 – 362.

    Article  ADS  Google Scholar 

  • Melrose, D.B.: 1987, Plasma emission – A review. Solar Phys. 111, 89 – 101. doi: 10.1007/BF00145443 .

    Article  ADS  Google Scholar 

  • Nindos, A., Aurass, H., Klein, K., Trottet, G.: 2008, Radio emission of flares and coronal mass ejections. Invited review. Solar Phys. 253, 3 – 41. doi: 10.1007/s11207-008-9258-9 .

    Article  ADS  Google Scholar 

  • Pavlenko, V.P., Petviashvili, V.I.: 1977, Stability and kinetic effects of a standing Langmuir wave. JETP Lett. 26, 200 – 202.

    ADS  Google Scholar 

  • Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun – Earth connection. Astron. Astrophys. Rev. 16, 1 – 153. doi: 10.1007/s00159-008-0013-x .

    Article  ADS  Google Scholar 

  • Rhee, T., Ryu, C., Woo, M., Kaang, H.H., Yi, S., Yoon, P.H.: 2009, Multiple harmonic plasma emission. Astrophys. J. 694, 618 – 625. doi: 10.1088/0004-637X/694/1/618 .

    Article  ADS  Google Scholar 

  • Robinson, P.A.: 1992, Clumpy Langmuir waves in type III radio sources. Solar Phys. 139, 147 – 163. doi: 10.1007/BF00147886 .

    Article  ADS  Google Scholar 

  • Robinson, P.A., Cairns, I.H., Gurnett, D.A.: 1992, Connection between ambient density fluctuations and clumpy Langmuir waves in type III radio sources. Astrophys. J. 387, L101 – L104. doi: 10.1086/186315 .

    Article  ADS  Google Scholar 

  • Rukhadze, A.A., Silin, V.P.: 1964, Reviews of topical problems: method of geometrical optics in the electrodynamics of AN inhomogeneous plasma. Sov. Phys. Usp. 7, 209 – 229. doi: 10.1070/PU1964v007n02ABEH003662 .

    Article  MathSciNet  ADS  Google Scholar 

  • Sakai, J.I., Kitamoto, T., Saito, S.: 2005, Simulation of solar type III radio bursts from a magnetic reconnection region. Astrophys. J. 622, L157 – L160. doi: 10.1086/429665 .

    Article  ADS  Google Scholar 

  • Sircombe, N.J., Arber, T.D.: 2009, VALIS: A split-conservative scheme for the relativistic 2D Vlasov – Maxwell system. J. Comput. Phys. 228, 4773 – 4788. doi: 10.1016/j.jcp.2009.03.029 .

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Smith, D.F.: 1970, Type III solar radio bursts. Adv. Astron. Astrophys. 7, 147 – 226.

    ADS  Google Scholar 

  • Tsiklauri, D., Sakai, J., Saito, S.: 2005, Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas. Astron. Astrophys. 435, 1105 – 1113. doi: 10.1051/0004-6361:20042436 .

    Article  ADS  Google Scholar 

  • Umeda, T.: 2010, Electromagnetic plasma emission during beam – plasma interaction: Parametric decay versus induced scattering. J. Geophys. Res. 115, 1204. doi: 10.1029/2009JA014643 .

    Article  Google Scholar 

  • Yin, L., Ashour-Abdalla, M., El-Alaoui, M., Bosqued, J.M., Bougeret, J.L.: 1998, Generation of electromagnetic f pe and 2f pe waves in the Earth’s electron foreshock via linear mode conversion. Geophys. Res. Lett. 25, 2609 – 2612. doi: 10.1029/98GL01989 .

    Article  ADS  Google Scholar 

  • Zaitsev, V.V., Mityakov, N.A., Rapoport, V.O.: 1972, A dynamic theory of type III solar radio bursts. Solar Phys. 24, 444 – 456. doi: 10.1007/BF00153387 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tsiklauri.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 28.8 MB)

(MPG 27.1 MB)

(MPG 27.5 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiklauri, D. Vlasov – Maxwell, Self-consistent Electromagnetic Wave Emission Simulations in the Solar Corona. Sol Phys 267, 393–410 (2010). https://doi.org/10.1007/s11207-010-9660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-010-9660-y

Keywords

Navigation